The effect of the preheating on to properties of the wear resistant welds

Main Article Content

Marek Gucwa
Jerzy Winczek
Miloš Mičian


Wear resistant welds are used in many industries when it is necessary to protect machine components and structures against wear caused by operating conditions. Often the main parameter determining the usefulness of these welds is high hardness reaching about 60HRC. In many cases, after the surfacing process, a mesh of cracks is formed in the surface layer, which can affect the durability of the hard-wearing layers used. The paper presents the analysis of the influence of preheating before welding up to 400 ° C on the properties of welds and its effect on the number of cracks in the surface layer. The use of preheating allowed to reduce the number of cracks in the surfacing to 1. The optimum heating temperature was 200 ° C, for which the number of cracks was reduced and the lowest wear was recorded.


Download data is not yet available.

Article Details

How to Cite
M. Gucwa, J. Winczek, and M. Mičian, “The effect of the preheating on to properties of the wear resistant welds”, Weld. Tech. Rev., vol. 92, no. 2, pp. 7–14, Mar. 2020.
Original Articles


Pokusová M., Brúsilová A., Šooš Ľ., Berta I., Abrasion wear behavior of high-chromium cast iron. Archives of Foundry Engineering, 2016, Vol. 16(2), 69-74. DOI:

Kopyciński D., Piasny S., Kawalec M., Madizhanova A., The Abrasive wear resistance of chromium cast iron. Archives of Foundry Engineering, 2014, Vol. 14(1), 63-66. DOI:

Szymura M., Czuprynski A., Różański M., Research on the properties of high chromium cast iron overlay welds deposited by tubular electrodes. Welding Technology Review, 2018, Vol. 90(10), 26-30. DOI:

Górka J., Czupryński A., Żuk M., Adamiak M., Kopyść A., Properties and structure of deposited nanocrystalline coatings in relation to selected construction materials resistant to abrasive wear. Materials, 2018, Vol. 11(7), 1184; DOI:

Okechukwu C., Dahunsi O. A., Ok P. K., Oladele I. O., Dauda M., Review on hardfacing as method of improving the servise life of critical components subjected to wear in service. Nigerian Journal of Technology, 2017, Vol. 36(4), 10951103. DOI:

Bęczkowski R., Gucwa M., Defects appearing in the surfacing layers of abrasion resistant. Archive of Foundry Engineering, 2016, Vol. 16(4), 23-28. DOI:

Viňáš J., Janette Brezinová J., Greš M., Resistance of Cladding Layers Made by FCAW Method to Erosive Wear. Materials Science Forum, 2016, Vol. 862, 33-40. DOI:

Buchanan V. E., Solidification and microstructural characterisation of ironchromium basedhardfaced coat-ings deposited by SMAW and electric arc spraying. Surface & Coatings Technology, 2009, Vol. 203, 3638-3646. DOI:

Hornung J., Zikin A., Pichelbauer K.,Kalin M.,Kirchgaßner M., Influence of cooling speed on the microstructure and wear behaviour of hypereutectic FeCrC hardfacings. Materials Science and Engineering: A, 2013, Vol. 576, 243-251. DOI:

Catalogue Welding Alloys.

Chatterjee S., Pal T. K., Welded procedural effect on the performance of iron based hardfacing deposits on cast iron substrate. Journal of Materials Processing Technology, 2006, Vol. 173(1), 61-69. DOI:

Nagentrau M., Mohd Tobi A. L., Sambu M., Jamian S., The influence of welding condition on the microstructure of WC hardfacing coating on carbon steel substrate. International Journal of Refractory Metals & Hard Materials, 2019, Vol. 82, 43-57. DOI:

Chaidemenopoulos N. G., Psyllaki P. P., Pavlidou E., Vourlias G., Aspects on carbides transformations of Fe-based hardfacing deposits. Surface & Coatings Technology, 2019, Vol. 357, 651-661. DOI:

Czupryński A., Kik T., Melcer M., Porównanie odporności na zużycie ścierne płyt trudnościeralnych. Welding Technology Review, 2018, Vol. 90(5), 28-36. DOI:

Correa E.O., N.G. Alcântara N.G., Valeriano L.C., Barbedo N.D., Chaves R.R., The effect of microstructure on abrasive wear of a FeCrCNb hardfacing alloy deposited by the open arc welding process. Surface & Coat-ings Technology, 2015, Vol. 276, 479484. DOI:

Most read articles by the same author(s)

1 2 > >>