Hardfacing of mild steel with wear-resistant Ni-based powders containing WC particles using PPTAW technology

Main Article Content

Augustine Appiah
Oktawian Bialas
Marcelina Jędrzejczyk
Natalia Ciemała
Łucja Wantuch
Marcin Żuk
Artur Czupryński
Marcin Adamiak

Abstract

This study explores the use of powder plasma transferred arc welding (PPTAW) as a surface layers deposition technology to form hardfaced coatings to improve upon the wear resistance of non-alloy structural steel. Hardfaced layers/coatings were prepared using the PPTAW process with two different wear-resistant powders: PG 6503 (NiSiB+60% WC) and PE 8214 (NiCrSiB+45% WC). By varying the PPTAW process parameters of plasma gas flow rate (PGFR) and plasma arc current, hardfaced layers were prepared. Microscopic examinations were carried out to ascertain information about the microstructure and surface characteristics of the prepared hardfaced layers. Penetration tests were performed to ascertain the number and depth of crack sites in the prepared samples by visual inspection. Hardness tests were also performed to determine the microhardness of the prepared hardfaced layers. Abrasive wear resistance tests were carried out on each prepared sample to determine their relative abrasive wear resistance relative to the reference material, abrasion resistant heat-treated steel having a nominal hardness of 400 HBW. The effects of the variations of PGFR and plasma arc current on the microstructure and mechanical properties of the coatings, and the wear mechanisms were discussed.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
A. Appiah, “Hardfacing of mild steel with wear-resistant Ni-based powders containing WC particles using PPTAW technology”, Weld. Tech. Rev., vol. 94, pp. 3–18, May 2022.
Section
Original Articles

References

Fotovvati, B.; Namdari, N.; Dehghanghadikolaei, A. On coating techniques for surface protection: A review. J. Manuf. Mater. Process. 2019, 3, 28, doi:10.3390/jmmp3010028.

Ashby, M.F.; Jones, D.R.H. Engineering materials 1: an introduction to properties, applications and design; Elsevier, 2012; Vol. 1; ISBN 0080966659.

Kern, W.; Schuegraf, K.K. Deposition technologies and applications: Introduction and overview. In Handbook of Thin Film Deposition Processes and Techniques; Elsevier, 2001; pp.1143.

Branagan, D.J.; Marshall, M.C.; Meacham, B.E. High toughness high hardness iron based PTAW weld materials. Mater. Sci. Eng. A 2006, 428, 116123, doi:10.1016/j.msea.2006.04.089.

Veinthal, R.; Sergejev, F.; Zikin, A.; Tarbe, R.; Hornung, J. Abrasive impact wear and surface fatigue wear behaviour of FeCrC PTA overlays. Wear 2013, 301, 102108, doi:10.1016/j.wear.2013.01.077.

Rohan, P.; Boxanova, M.; Zhang, L.; Kramar, T.; Lukac, F. High speed steel deposited by pulsed PTA- Frequency influence. In Proceedings of the Proceedings to International Thermal Spray Conference, Dusseldorf, Germany; 2017; pp. 404407.

Zikin, A.; Hussainova, I.; Katsich, C.; Badisch, E.; Tomastik, C. Advanced chromium carbide-based hardfacings. Surf. Coatings Technol. 2012, 206, 42704278, doi:10.1016/j.surfcoat.2012.04.039.

Skowrońska, B.; Sokołowski, W.; Rostamian, R. Structural investigation of the Plasma Transferred Arc hardfaced glass mold after operation. Weld. Technol. Rev. 2020, 92, 5556, doi:10.26628/wtr.v92i3.1109.

Bober, M.; Senkara, J. Comparative tests of plasma-surfaced nickel layers with chromium and titanium carbides. Weld. Int. 2016, 30, 107111, doi:10.1080/09507116.2014.937616.

Niu, J.; Guo, W.; Guo, M.; Lu, S. Plasma application in thermal processing of materials. Vacuum 2002, 65, 263-266, doi:10.1016/S0042-207X(01)00430-4.

Mendez, P.F.; Barnes, N.; Bell, K.; Borle, S.D.; Gajapathi, S.S.; Guest, S.D.; Izadi, H.; Gol, A.K.; Wood, G. Welding processes for wear resistant overlays. J. Manuf. Process. 2014, 16, 425, doi:10.1016/j.jmapro.2013.06.011.

Kesavan, D.; Kamaraj, M. The microstructure and high temperature wear performance of a nickel base hardfaced coating. Surf. coatings Technol. 2010, 204, 40344043, doi:10.1016/j.surfcoat.2010.05.022.

Szala, M.; Hejwowski, T.; Lenart, I. Cavitation erosion resistance of Ni-Co based coatings. Adv. Sci. Technol. Res. J. 2014, 8, doi:10.1016/j.wear.2011.05.012.

Mandal, S.; Kumar, S.; Bhargava, P.; Premsingh, C.H.; Paul, C.P.; Kukreja, L.M. An experimental investigation and analysis of PTAW process. Mater. Manuf. Process. 2015, 30, 11311137, doi:10.1080/10426914.2014.984227.

Qi, C.; Zhan, X.; Gao, Q.; Liu, L.; Song, Y.; Li, Y. The influence of the pre-placed powder layers on the morphology, microscopic characteristics and microhardness of Ti-6Al-4V/WC MMC coatings during laser cladding. Opt. Laser Technol. 2019, 119, 105572, doi:10.1016/j.optlastec.2019.105572.

Ye, T.; Ju, J.; Fu, H.; Ma, S.; Lin, J.; Lei, Y. Effects of Chromium Content on Microstructure, Hardness, and Wear Resistance of As-Cast Fe-Cr-B Alloy. J. Mater. Eng. Perform. 2018, 28, 64276437, doi:10.1007/s11665-019-04369-5.

Huang, S.W.; Samandi, M.; Brandt, M. Abrasive wear performance and microstructure of laser clad WC/Ni layers. wear 2004, 256, 10951105, doi:10.1016/S0043-1648(03)00526-X.

Czupryński, A.; Żuk, M. Matrix Composite Coatings Deposited on AISI 4715 Steel by Powder Plasma-Transferred Arc Welding. Part 3. Comparison of the Brittle Fracture Resistance of Wear- Resistant Composite Layers Surfaced Using the PPTAW Method. Materials (Basel). 2021, 14, 6066, doi:10.3390/ma14206066.

Xu, H.; Huang, H.; Liu, Z. Influence of Plasma Transferred Arc Remelting on Microstructure and Properties of PTAW-Deposited Ni-Based Overlay Coating. J. Therm. Spray Technol. 2021, 30, 946958, doi:10.1007/s11666-021-01183-1.

Li, G.L.; Ma, J.L.; Wang, H.D.; Kang, J.J.; Xu, B.S. Effects of argon gas flow rate on the microstructure and micromechanical properties of supersonic plasma sprayed nanostructured Al 2 O 3 -13 wt.%TiO 2 coatings. Appl. Surf. Sci. 2014, 311, 124130, doi:10.1016/j.apsusc.2014.05.025.

El-Mahallawi, I.; Abdel-Karim, R.; Naguib, A. Evaluation of effect of chromium on wear performance of high manganese steel. Mater. Sci. Technol. 2001, 17, 13851390, doi:10.1179/026708301101509340.

Wilden, J.; Bergmann, J.P.; Frank, H. Plasma transferred arc welding—modeling and experimental optimization. J. Therm. spray Technol. 2006, 15, 779784, doi:10.1361/105996306X146767.

Yibo, X.; Dongqing, L.; Zhizhen, Z.; Jianjun, L.; Tiantian, D. The Effect of Different Arc Currents on the Microstructure and Tribological Behaviors of Cu. 2018, doi:10.3390/met8120984.

Czupryński, A. Microstructure and Abrasive Wear Resistance of Metal Matrix Composite Coatings Deposited on Steel Grade AISI 4715 by Powder Plasma Transferred Arc Welding Part 1. Mechanical and Structural Properties of a Cobalt-Based Alloy Surface Layer Reinforced with P. Materials (Basel). 2021, 14, 2382, doi:10.3390/ma14112805.

Fernandes, F.; Lopes, B.; Cavaleiro, A.; Ramalho, A.; Loureiro, A. Effect of arc current on microstructure and wear characteristics of a Ni-based coating deposited by PTA on gray cast iron. Surf. Coatings Technol. 2011, 205, 40944106, doi:10.1016/j.surfcoat.2011.03.008.

Paes, R.M.G.; Scheid, A. Effect of deposition current on microstructure and properties of CoCrWC alloy PTA coatings. Soldag. Inspeção 2014, 19, 247254, doi:10.1590/01049224/si1903.07.

Om, H.; Pandey, S. Effect of heat input on dilution and heat affected zone in submerged arc welding process. Sadhana 2013, 38, 13691391, doi:10.1007/s12046-013-0182-9.

Bansal, A.; Zafar, S.; Sharma, A.K. Microstructure and abrasive wear performance of Ni WC composite microwave clad. J. Mater. Eng. Perform. 2015, 24, 37083716, doi:10.1007/s11665-015-1657-0.

Qiao, L.; Wu, Y.; Hong, S.; Long, W.; Cheng, J. Wet abrasive wear behavior of WC-based cermet coatings prepared by HVOF spraying. Ceram. Int. 2021, 47, 18291836, doi:10.1016/j.ceramint.2020.09.009.

Most read articles by the same author(s)

1 2 3 > >>