Effect of Laser Welding parameters on Tensile strength of different metals: Meta-analysis

Main Article Content

Muhammad Rohan Shafiq


There are different methods of welding. This different welding is done on a variety of metals. In this paper, meta-analysis is done on laser welding, and studies are done on different metals. 232 research papers were selected based on the title. From these research papers, 47 research papers were selected based on the title. Finally, 16 studies are selected for meta-analysis. This selected data is normalized for the ANOVA test. In ANOVA test found that after welding ultimate tensile strength depend on power and before welding ultimate tensile strength, which verified by correlation plot. A forest plot is also plotted which shows that the data is significant. PCA analysis is done, which shows laser offset welding is irrelevant to welding ultimate tensile strength. 


Download data is not yet available.

Article Details

How to Cite
M. R. Shafiq, “Effect of Laser Welding parameters on Tensile strength of different metals: Meta-analysis”, Weld. Tech. Rev., vol. 96, pp. 27–33, Feb. 2024.
Original Articles


Antony K.; Rakeshnath T.R. Dissimilar laser welding of commercially pure copper and stainless steel 316L, Materials Today: Proceedings, 2020, Vol. 26, 369-372. https://doi.org/10.1016/j.matpr.2019.12.043

Weigl M.; Schmidt M. Influence of the feed rate and the lateral beam displacement on the joining quality of laser-welded copper-stainless steel connections, Physics Procedia, 2010, Vol. 5, 53-59. https://doi.org/10.1016/j.phpro.2010.08.029

Mai T.A.; Spowage A.C. Characterisation of dissimilar joints in laser welding of steel–kovar, copper–steel and copper–aluminium, Materials Science and Engineering: A, 2004, Vol. 374(1-2), 224-233. https://doi.org/10.1016/j.msea.2004.02.025

Lee H.T.; Te Chen C.; Wu J.L.; Numerical and experimental investigation into effect of temperature field on sensitization of Alloy 690 butt welds fabricated by gas tungsten arc welding and laser beam welding, Journal of materials processing Technology, 2010, Vol. 210(12), 1636-1645. https://doi.org/10.1016/j.jmatprotec.2010.05.012

Tomashchuk I.; Mostafa M.; Caudwell T.; Sallamand P.; Duband M. Behavior of laser induced keyhole during dissimilar welding of metals. In Lasers in Manufacturing Conference, 2017 (pp. 26-29).

Cao F.; Zhang Y.; Shen Y.; Jin Y.; Li J.; Hou W. Effects of beam offset on the macro defects, microstructure and mechanical behaviors in dissimilar laser beam welds of SDSS2507 and Q235, Journal of Manufacturing Processes, 2020, Vol. 55, 335-347. https://doi.org/10.1016/j.jmapro.2019.10.006

Giorjão R.A.R.; Pereira V.F.; Terada M.; da Fonseca E.B.; Marinho R.R.; Garcia D.M.; Tschiptschin A.P. Microstructure and mechanical properties of friction stir welded 8 mm pipe SAF 2507 super duplex stainless steel, Journal of Materials Research and Technology, 2019, Vol. 8(1), 243-249. https://doi.org/10.1016/j.jmrt.2018.01.002

Kangazian J.; Shamanian M. Microstructure and mechanical characterization of Incoloy 825 Ni-based alloy welded to 2507 super duplex stainless steel through dissimilar friction stir welding, Transactions of Nonferrous Metals Society of China, 2019, Vol. 29(8), 1677-1688. https://doi.org/10.1016/S1003-6326(19)65074-0

Geng S.; Sun J.; Guo L.; Wang H. Evolution of microstructure and corrosion behavior in 2205 duplex stainless steel GTA-welding joint, Journal of Manufacturing Processes, 2015, Vol. 19, 32-37. https://doi.org/10.1016/j.jmapro.2015.03.009

Moteshakker A.; Danaee I. Microstructure and corrosion resistance of dissimilar weld-joints between duplex stainless steel 2205 and austenitic stainless steel 316L, Journal of Materials Science & Technology, 2016, Vol. 32(3), 282-290. https://doi.org/10.1016/j.jmst.2015.11.021

Jiang X.; Du C.; Ni M.; Liu J. Effect of beam offset on the microstructure and mechanical properties of 201SS-Q235 self-fusion LBW joint, Journal of Manufacturing Processes, 2019, Vol. 47, 297-309. https://doi.org/10.1016/j.jmapro.2019.10.006

Cao X.; Zhou X.; Wang H.; Luo Z. Microstructures and mechanical properties of laser offset welded 5052 aluminum to press-hardened steel, Journal of Materials Research and Technology, 2020, Vol. 9(3), 5378-5390. https://doi.org/10.1016/j.jmrt.2020.03.064

Chamanfar A.; Huang M.F.; Pasang T.; Tsukamoto M.; Misiolek W.Z. Microstructure and mechanical properties of laser welded Ti–10V–2Fe–3Al (Ti1023) titanium alloy, Journal of Materials Research and Technology, 2020, 9(4), 7721-7731. https://doi.org/10.1016/j.jmrt.2020.04.028

Datta S.; Raza M.S.; Das A.K.; Saha P.; Pratihar D.K. Experimental investigations and parametric optimization of laser beam welding of NiTinol sheets by metaheuristic techniques and desirability function analysis, Optics & Laser Technology, 2020, Vol. 124, 105982. https://doi.org/10.1016/j.optlastec.2019.105982

Zorarpacı E.; Özel S.A. A hybrid approach of differential evolution and artificial bee colony for feature selection, Expert Systems with Applications, 2016, Vol. 62, 91-103. https://doi.org/10.1016/j.eswa.2016.06.004

Canayaz M.; Karci A. Cricket behaviour-based evolutionary computation technique in solving engineering optimization problems, Applied Intelligence, 2016, Vol. 44, 362-376. https://doi.org/10.1007/s10489-015-0706-6

Das A.K.; Pratihar D.K. A new bonobo optimizer (BO) for real-parameter optimization, In 2019 IEEE Region 10 Symposium (TENSYMP), 2019, June, pp. 108-113, IEEE.

Holland J.H. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence, 1992 MIT press.

Botha S.; Fourie J.; Kloppers C.P. Evaluating the accuracy of a digital correlation system to predict the fatigue failure of additively manufactured parts, South African Journal of Industrial Engineering, 2023, Vol. 34(1), 61-71.

Balasubramanian T.S.; Balakrishnan M.; Balasubramanian V.; Manickam M.M. Influence of welding processes on microstructure, tensile and impact properties of Ti-6Al-4V alloy joints, Transactions of Nonferrous Metals Society of China, 2011, Vol. 21(6), 1253-1262. https://doi.org/10.1007/s10489-015-0706-6

Campanelli S.L.; Casalino G.; Mortello M.; Angelastro A.; Ludovico A.D. Microstructural characteristics and mechanical properties of Ti6Al4V alloy fiber laser welds, Procedia CIRP, 2015, Vol. 33, 428-433. https://doi.org/10.1016/j.procir.2015.06.098

Fu Y.; Guo N.; Zhu B.; Shi X.; Feng J. Microstructure and properties of underwater laser welding of TC4 titanium alloy, Journal of Materials Processing Technology, 2020, vol. 275, 116372. https://doi.org/10.1016/j.jmatprotec.2019.116372

Goyal R.; El-zein M. Influence of laser weld shape on mechanical and fatigue behaviour of single lap laser welded joints, Journal of Advanced Joining Processes, 2020, Vol. 1, 100018. https://doi.org/10.1016/j.jajp.2020.100018

Zhishou Z.H.U.; Xinnan W.A.N.G.; Shang G.; Yue F.E.I.; Liwei Z.H.U.; Mingbing L.I.; Zhe W.A.N.G. Research and application of new type of high performance titanium alloy, 航空材料学报, 2016, Vol. 36(3), 7-12. https://10.11868/j.issn.1005-5053.2016.3.002

Yang D.; Fu Y.; Hui S.; Ye W.; Yu Y.; Liang E. Research and application of high strength and high toughness titanium alloys, Xiyou Jinshu(Chinese Journal of Rare Metals), 2011, Vol. 35(4), 575-580. https://doi.org/10.3969/j.issn.0258-7076.2011.04.017

Boyer, R.R. Attributes, characteristics, and applications of titanium and its alloys, Jom, 2010, Vol. 62, 21-24. https://doi.org/10.1007/s11837-010-0071-1