Consequences of using overlays on welded joints
Main Article Content
Abstract
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Creative Commons CC BY 4.0 https://creativecommons.org/licenses/by/4.0/
Welding Technology Review (WTR) articles are published open access under a CC BY licence (Creative Commons Attribution 4.0 International licence). The CC BY licence is the most open licence available and considered the industry 'gold standard' for open access; it is also preferred by many funders. This licence allows readers to copy and redistribute the material in any medium or format, and to alter, transform, or build upon the material, including for commercial use, providing the original author is credited.
References
Wichtowski B.; Konecki K. Fatigue strength of steel plate girder railway bridges with butt joints reinforced with overlays, Welding Technology Review, 2021, Vol. 93(3), 31-40. https://doi.org/10.26628/wtr.v93i3.1139
Benardos N.; Olszewski S. Patent for Arc Welding No. 171596. Paris, October 10, 1885.
Golański G and others, An outline of the use of FEM simulation in the analysis of the impact of welding imper-fections on the operational characteristics of welded structures, Częstochowa: Publishing House of the Często-chowa University of Technology, 2020.
Kudła K.; Wojsyk K. Joint and load-bearing functions of welds in modern welded structures, Bonding construc-tion materials. 2010, 3-4, pages 26-28.
Augustyn J.; Śledziewski E. Failures of steel structures. Warsaw: Arkady, 1976.
Ferenc K.; Ferenc J. Welded structures. Warsaw: WNT, 2018.
Consequences of over-rigidity of welded structures subjected to fatigue and ways to eliminate negative opera-tional effects. Wojsyk K.; Kudła K. Międzyzdroje: XXV Scientific and Technical Welding Conference "Progress, innovations and quality requirements of welding processes", 2019.
PN-EN 1993-1-8:2006 Eurocode 3: Design of steel structures - Part 1-8: Design of joints. 2006.
Kudła K.; Wojsyk K. Determination of design stresses in fillet welds under complex load conditions according to Eurocode 3. Welding Technology Review. 2014, 8, pages 8-14.
Kudła K.; Wojsyk K. Rational use of fillet and fillet welds in welded structures, Welding Technology Review, 2019, Vol. 91(6), 7-14. https://doi.org/10.26628/wtr.v91i6.1033
Rykaluk R. Cracks in steel structures. Wrocław: Lower Silesian Educational Publishing House, 2000.
Broek D. Elementary Engineering Fracture Mechanic. London: Kluwer Academic Publisher, 1991.
Dundu M., Mathematical model to determine the weld resistance factor of asymmetrical strength results. Structures, 2017, Vol. 12, 298-305. https://doi.org/10.1016/j.istruc.2017.10.002
Torabian S.; Xiao F.; Haws R.B.; Schafer B.W., Design of transverse fillet welds in the lapped joints of thin steel plates. International Journal of Steel Structures. 2018, Vol. 18(1), 337-348. https://doi.org/10.1007/s13296-018-0325-2
Mikkola E.; Murakami Y.; Marquis G., Fatigue life assessment of welded joints by the equivalent crack length method. Proccedia Materials Science, 2014, Vol. 3, 1822-1827. https://doi.org/10.1016/j.mspro.2014.06.294
Perić M.; Tonković Z.; Rodić A.; Surjak M.; Garasić I.; Boras I.; Svaić S., Numerical analysis and experimental investigation of welding residua stresses and distortions in a T-joint fillet weld. Materials & Design, 2014, Vol. 53, 1052-1063. https://doi.org/10.1016/j.matdes.2013.08.011
Khurshid M.; Barsoum Z.; Mumtaz N.A., Ultimate strenght and failure modes for fillet welds in high strength steels. Materials & Design, 2012, Vol. 40, 36-42. https://doi.org/10.1016/j.matdes.2012.03.048