Analysis of direct metal laser sintering DMLS and heat treatment influence on the Inconel 713C nickel alloy structure

##plugins.themes.bootstrap3.article.main##

Jakub Ciftci
Ryszard Sitek
Jarosław Mizera

Abstrakt

Grupa nadstopów niklu wytwarzanych są w procesie DMLS (ang. Direct Metal Laser Sintering) ogranicza się do materiałów, które wytwarzane konwencjonalnie nie posiadają właściwości, pozwalających zastosować je na elementy wirujące silników lotniczych. W pracy podjęto próbę optymalizacji parametrów technologicznych procesu DMLS dla nadstopu niklu Inconel 713C. Dla wybranych próbek przeprowadzono obróbkę cieplną w celu zbadania jej wpływu na morfologię fazy Ni3Al. Przeprowadzono analizę mikrostruktury oraz badania twardości. Materiał po procesie DMLS charakteryzował się obecnością znacznie mniejszych dendrytów niż materiał odlewany oraz przewyższał jego twardość. Dla zbadanych wariantów obróbki cieplnej materiał charakteryzował się mniejszymi rozmiarami fazy Ni3Al. W celu zapewnienia stabilności mikrostruktury, wymagana jest optymalizacja obróbki cieplnej dedykowanej po procesie DMLS, ponieważ  standardowa obróbka cieplna dla odlewanego nadstopu  niklu Inconel 713C nie zapewnia pełnej rekrystalizacji materiału.

Pobrania

Brak dostępnych danych do wyświetlenia.

##plugins.themes.bootstrap3.article.details##

Jak cytować
[1]
J. Ciftci, R. Sitek, i J. Mizera, „Analysis of direct metal laser sintering DMLS and heat treatment influence on the Inconel 713C nickel alloy structure”, Weld. Tech. Rev., t. 93, nr 3, s. 49–56, sie. 2021.
Dział
Original Articles
Biogram autora

Jarosław Mizera - Warsaw University of Technology

Dziekan Wydziału Inżynierii Materiałowej Politechniki Warszawskiej

Bibliografia

Masiol M., Harrison R.M., Aircraft engine exhaust emissions and other airport-related contributions to ambient air pollution: A review. Atmospheric Environment, 2014, Vol. 95, 40955. https://doi.org/10.1016/j.atmosenv.2014.05.070

Fulara S., Chmielewski M., Gieras M., Variable geometry in miniature gas turbine for improved performance and reduced environmental impact. Energies, 2020, Vol. 13(19). https://doi.org/10.3390/en13195230

Nguyen T.H., Tri Nguyen P., Garnier F., Evaluation of the relationship between the aerothermodynamic process and operational parameters in the high-pressure turbine of an aircraft engine. Aerospace Science and Technology, 2019, Vol. 86, 93105. https://doi.org/10.1016/j.ast.2019.01.011

Lu Z.L., Cao J.W., Jing H., Liu T., Lu F., Wang D.X., et al., Review of main manufacturing processes of complex hollow turbine blades: This paper critically reviews conventional and advanced technologies used for manufacturing hollow turbine blades.Virtual and Physical Prototyping, 2013, Vol. 8(2), 8795. https://doi.org/10.1080/17452759.2013.790600

Tian Z., Zhang C., Wang D., Liu W., Fang X., Wellmann D., et al., A review on laser powder bed fusion of inconel 625 nickel-based alloy. Applied Sciences, 2020, Vol. 10(1). https://doi.org/10.3390/app10010081

Yang H., Yang J., Huang W., Jing G., Wang Z., Zeng X., Controllable in-situ aging during selective laser melting: Stepwise precipitation of multiple strengthening phases in Inconel 718 alloy. Journal of Materials Science & Technology, 2019, Vol. 35. https://doi.org/10.1016/j.jmst.2019.05.024

Perevoshchikova N., Rigaud J., Sha Y., Heilmaier M., Finnin B., Labelle E., et al., Optimisation of selective laser melting parameters for the Ni-based superalloy IN-738 LC using Doehlerts design. Rapid Prototyping Journal, 2017, Vol. 23(5), 88192. https://doi.org/10.1108/RPJ-04-2016-0063

Ojo O.A., Richards N.L., Chaturvedi M.C., Contribution of constitutional liquation of gamma prime precipitate to weld HAZ cracking of cast Inconel 738 superalloy. Scripta Materialia, 2004, Vol. 50(5), 6416. https://doi.org/10.1016/j.scriptamat.2003.11.025

Chamanfar A., Jahazi M., Bonakdar A., Morin E., Firoozrai A., Cracking in fusion zone and heat affected zone of electron beam welded Inconel-713LC gas turbine blades. Materials Science and Engineering A, 2015, Vol. 642, 23040. https://doi.org/10.1016/j.msea.2015.06.087

Chen Z., Chen S., Wei Z., Zhang L., Wei P., Lu B., et al., Anisotropy of nickel-based superalloy K418 fabricated by selective laser melting. Progress in Natural Science: Materials International, 2018, Vol. 28. https://doi.org/10.1016/j.pnsc.2018.07.001

Adamiec J., Łyczkowska K., Przetapianie laserowe i łukiem plazmowym odlewów precyzyjnych ze stopu Inconel 713C. Przegląd Spawalnictwa - Welding Technology Review Internet, 2017, Vol. 89(5).

Long H., Mao S., Liu Y., Zhang Z., Han X., Microstructural and compositional design of Ni-based single crystalline superalloys ― A review. Journal of Alloys and Compounds, 2018, Vol. 743, 20320. https://doi.org/10.1016/j.jallcom.2018.01.224

Łyczkowska K., Adamiec J., Jachym R., Kwieciński K., Properties of the Inconel 713 Alloy Within the High Temperature Brittleness Range. Archives of Foundry Engineering, 2017, Vol. 17. https://doi.org/10.1515/afe-2017-0138

Ye D., Hsi Fuh J.Y., Zhang Y., Hong G.S., Zhu K., In situ monitoring of selective laser melting using plume and spatter signatures by deep belief networks. ISA Transactions, 2018, Vol. 81(May 2019), 96104. https://doi.org/10.1016/j.isatra.2018.07.021

Cheng B., Shrestha S., Chou K., Stress and deformation evaluations of scanning strategy effect in selective laser melting. Additive Manufacturing, 2016, Vol. 12. https://doi.org/10.1016/j.addma.2016.05.007

Xiong Z., Zhang P., Tan C., Dong D., Ma W., Yu K., Selective Laser Melting and Remelting of Pure Tungsten. Advanced Engineering Materials, 2020, Vol. 22(3), 1901352. https://doi.org/10.1002/adem.201901352

Galizoni B.B., Couto A.A., Reis D.A.P., Heat treatments effects on nickel-based superalloy inconel 713C. Metals, 2019, Vol. 9(1). https://doi.org/10.3390/met9010047

Lachowicz M., Dudziński W., Haimann K., Podrez-Radziszewska M., Microstructure transformations and cracking in the matrix of γ-γ′ superalloy Inconel 713C melted with electron beam. Materials Science and Engineering A, 2008, Vol. 479. https://doi.org/10.1016/j.msea.2007.06.064

Safarloo S., Loghman F., Azadi M., Azadi M., Optimal Design Experiment of Ageing Time and Temperature in Inconel-713C Superalloy Based on Hardness Objective. Transactions of the Indian Institute of Metals, 2018, Vol. 71(7). https://doi.org/10.1007/s12666-018-1291-2

Jonšta P., Jonšta Z., Sojka J., Čížek L., Hernas A., Structural characteristics of nickel super alloy INCONEL 713LC after heat treatment. Journal of Achievement in Materials and Manufacturing Engineering Internet, 2007, Vol. 21(2), 2932.

Chu F., Zhang K., Shen H., Liu M., Huang W., Zhang X., et al., Influence of satellite and agglomeration of powder on the processability of AlSi10Mg powder in Laser Powder Bed Fusion. Journal of Materials Research and Technology, 2021, Vol. 11, 205973. https://doi.org/10.1016/j.jmrt.2021.02.015

Zhang B., Tao C., Lu X., Liu C., Hu C., Bai M., Recrystallization of single crystal nickel-based superalloy. Journal of Iron and Steel Research International, 2009, Vol. 16(6). https://doi.org/10.1016/S1006-706X(10)60031-3

Nawrocki J., Gancarczyk K., Manaj W., Albrecht R., Cygan R., Krupa K., The Effect of Superalloy Structure on Ultrasonic Wave Parameters. Fatigue of Aircraft Structures, 2015, Vol. 1. https://doi.org/https://doi.org/10.1515/fas-2015-0010

Körner C., Ramsperger M., Meid C., Bürger D., Wollgramm P., Bartsch M., et al., Microstructure and Mechanical Properties of CMSX-4 Single Crystals Prepared by Additive Manufacturing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, Vol. 49(9), 378192. https://doi.org/10.1007/s11661-018-4762-5

Aboulkhair N.T., Simonelli M., Parry L., Ashcroft I., Tuck C., Hague R., 3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting. Progress in Materials Science, 2019, Vol. 106. https://doi.org/10.1016/j.pmatsci.2019.100578

Liu W.H., Wu Y., He J.Y., Nieh T.G., Lu Z.P., Grain growth and the HallPetch relationship in a high-entropy FeCrNiCoMn alloy. Scripta Materialia, 2013, Vol. 68(7), 5269. https://doi.org/10.1016/j.scriptamat.2012.12.002