Analysis of direct metal laser sintering DMLS and heat treatment influence on the Inconel 713C nickel alloy structure
Main Article Content
Abstract
The group of nickel based superalloys produced in the DMLS (Direct Metal Laser Sintering) process is limited to materials, which produced conventionally do not have properties to allow to use them for rotating components of aircraft engines. This work attempts to optimize the technological parameters of the DMLS process for the Inconel 713C nickel superalloy. A heat treatment was performed for selected samples to investigate the effect on the morphology of the Ni3Al phase. The microstructure analysis and hardness tests were carried out. The material after the DMLS process was characterized by the presence of much smaller dendrites than the cast material and exceeded its hardness. For the tested variants of heat treatment, the material was characterized by smaller sizes of the Ni3Al phase. In order to ensure the stability of the microstructure, an optimization of the dedicated heat treatment after the DMLS process is required, as the standard heat treatment for Inconel 713C cast nickel superalloy does not fully recrystallize the material.
Downloads
Article Details
Creative Commons CC BY 4.0 https://creativecommons.org/licenses/by/4.0/
Welding Technology Review (WTR) articles are published open access under a CC BY licence (Creative Commons Attribution 4.0 International licence). The CC BY licence is the most open licence available and considered the industry 'gold standard' for open access; it is also preferred by many funders. This licence allows readers to copy and redistribute the material in any medium or format, and to alter, transform, or build upon the material, including for commercial use, providing the original author is credited.
References
Fulara S., Chmielewski M., Gieras M., Variable geometry in miniature gas turbine for improved performance and reduced environmental impact. Energies, 2020, Vol. 13(19). https://doi.org/10.3390/en13195230
Nguyen T.H., Tri Nguyen P., Garnier F., Evaluation of the relationship between the aerothermodynamic process and operational parameters in the high-pressure turbine of an aircraft engine. Aerospace Science and Technology, 2019, Vol. 86, 93105. https://doi.org/10.1016/j.ast.2019.01.011
Lu Z.L., Cao J.W., Jing H., Liu T., Lu F., Wang D.X., et al., Review of main manufacturing processes of complex hollow turbine blades: This paper critically reviews conventional and advanced technologies used for manufacturing hollow turbine blades.Virtual and Physical Prototyping, 2013, Vol. 8(2), 8795. https://doi.org/10.1080/17452759.2013.790600
Tian Z., Zhang C., Wang D., Liu W., Fang X., Wellmann D., et al., A review on laser powder bed fusion of inconel 625 nickel-based alloy. Applied Sciences, 2020, Vol. 10(1). https://doi.org/10.3390/app10010081
Yang H., Yang J., Huang W., Jing G., Wang Z., Zeng X., Controllable in-situ aging during selective laser melting: Stepwise precipitation of multiple strengthening phases in Inconel 718 alloy. Journal of Materials Science & Technology, 2019, Vol. 35. https://doi.org/10.1016/j.jmst.2019.05.024
Perevoshchikova N., Rigaud J., Sha Y., Heilmaier M., Finnin B., Labelle E., et al., Optimisation of selective laser melting parameters for the Ni-based superalloy IN-738 LC using Doehlerts design. Rapid Prototyping Journal, 2017, Vol. 23(5), 88192. https://doi.org/10.1108/RPJ-04-2016-0063
Ojo O.A., Richards N.L., Chaturvedi M.C., Contribution of constitutional liquation of gamma prime precipitate to weld HAZ cracking of cast Inconel 738 superalloy. Scripta Materialia, 2004, Vol. 50(5), 6416. https://doi.org/10.1016/j.scriptamat.2003.11.025
Chamanfar A., Jahazi M., Bonakdar A., Morin E., Firoozrai A., Cracking in fusion zone and heat affected zone of electron beam welded Inconel-713LC gas turbine blades. Materials Science and Engineering A, 2015, Vol. 642, 23040. https://doi.org/10.1016/j.msea.2015.06.087
Chen Z., Chen S., Wei Z., Zhang L., Wei P., Lu B., et al., Anisotropy of nickel-based superalloy K418 fabricated by selective laser melting. Progress in Natural Science: Materials International, 2018, Vol. 28. https://doi.org/10.1016/j.pnsc.2018.07.001
Adamiec J., Łyczkowska K., Przetapianie laserowe i łukiem plazmowym odlewów precyzyjnych ze stopu Inconel 713C. Przegląd Spawalnictwa - Welding Technology Review Internet, 2017, Vol. 89(5).
Long H., Mao S., Liu Y., Zhang Z., Han X., Microstructural and compositional design of Ni-based single crystalline superalloys ― A review. Journal of Alloys and Compounds, 2018, Vol. 743, 20320. https://doi.org/10.1016/j.jallcom.2018.01.224
Łyczkowska K., Adamiec J., Jachym R., Kwieciński K., Properties of the Inconel 713 Alloy Within the High Temperature Brittleness Range. Archives of Foundry Engineering, 2017, Vol. 17. https://doi.org/10.1515/afe-2017-0138
Ye D., Hsi Fuh J.Y., Zhang Y., Hong G.S., Zhu K., In situ monitoring of selective laser melting using plume and spatter signatures by deep belief networks. ISA Transactions, 2018, Vol. 81(May 2019), 96104. https://doi.org/10.1016/j.isatra.2018.07.021
Cheng B., Shrestha S., Chou K., Stress and deformation evaluations of scanning strategy effect in selective laser melting. Additive Manufacturing, 2016, Vol. 12. https://doi.org/10.1016/j.addma.2016.05.007
Xiong Z., Zhang P., Tan C., Dong D., Ma W., Yu K., Selective Laser Melting and Remelting of Pure Tungsten. Advanced Engineering Materials, 2020, Vol. 22(3), 1901352. https://doi.org/10.1002/adem.201901352
Galizoni B.B., Couto A.A., Reis D.A.P., Heat treatments effects on nickel-based superalloy inconel 713C. Metals, 2019, Vol. 9(1). https://doi.org/10.3390/met9010047
Lachowicz M., Dudziński W., Haimann K., Podrez-Radziszewska M., Microstructure transformations and cracking in the matrix of γ-γ′ superalloy Inconel 713C melted with electron beam. Materials Science and Engineering A, 2008, Vol. 479. https://doi.org/10.1016/j.msea.2007.06.064
Safarloo S., Loghman F., Azadi M., Azadi M., Optimal Design Experiment of Ageing Time and Temperature in Inconel-713C Superalloy Based on Hardness Objective. Transactions of the Indian Institute of Metals, 2018, Vol. 71(7). https://doi.org/10.1007/s12666-018-1291-2
Jonšta P., Jonšta Z., Sojka J., ČÞek L., Hernas A., Structural characteristics of nickel super alloy INCONEL 713LC after heat treatment. Journal of Achievement in Materials and Manufacturing Engineering Internet, 2007, Vol. 21(2), 2932.
Chu F., Zhang K., Shen H., Liu M., Huang W., Zhang X., et al., Influence of satellite and agglomeration of powder on the processability of AlSi10Mg powder in Laser Powder Bed Fusion. Journal of Materials Research and Technology, 2021, Vol. 11, 205973. https://doi.org/10.1016/j.jmrt.2021.02.015
Zhang B., Tao C., Lu X., Liu C., Hu C., Bai M., Recrystallization of single crystal nickel-based superalloy. Journal of Iron and Steel Research International, 2009, Vol. 16(6). https://doi.org/10.1016/S1006-706X(10)60031-3
Nawrocki J., Gancarczyk K., Manaj W., Albrecht R., Cygan R., Krupa K., The Effect of Superalloy Structure on Ultrasonic Wave Parameters. Fatigue of Aircraft Structures, 2015, Vol. 1. https://doi.org/https://doi.org/10.1515/fas-2015-0010
Körner C., Ramsperger M., Meid C., Bürger D., Wollgramm P., Bartsch M., et al., Microstructure and Mechanical Properties of CMSX-4 Single Crystals Prepared by Additive Manufacturing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, Vol. 49(9), 378192. https://doi.org/10.1007/s11661-018-4762-5
Aboulkhair N.T., Simonelli M., Parry L., Ashcroft I., Tuck C., Hague R., 3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting. Progress in Materials Science, 2019, Vol. 106. https://doi.org/10.1016/j.pmatsci.2019.100578
Liu W.H., Wu Y., He J.Y., Nieh T.G., Lu Z.P., Grain growth and the HallPetch relationship in a high-entropy FeCrNiCoMn alloy. Scripta Materialia, 2013, Vol. 68(7), 5269. https://doi.org/10.1016/j.scriptamat.2012.12.002