Zero-emission joining methods for low-load automotive structural components
Main Article Content
Abstract
The article contains general information on the bonding of aluminum sheets, taking into account the most commonly used methods of surface preparation of sheets, a description of the bonding mechanism and a comparison of the different types of adhesives used in the industry, a summary table provides information on the most commonly used adhesives used in the industry. In addition, the static tensile test of aluminum alloys used in the automotive industry is described. In the following part of the article, the research problem of bonding strength of sheet metal by gluing with two types of two-component adhesive Epidian 57 and Epidian 53 is solved. In the practical part of the research, aluminum alloy 2024 - T3, the most commonly used alloy for the production of low-load structural components used in the automotive and aerospace industries, was used. The test consisted of gluing together two overlapping (overlap bonding) sheets of metal with different types of adhesive using a specially designed device. The thickness of the sheet used was 1mm, the total thickness was 2mm. After the gluing process, the samples were torn on a testing machine. The results are shown in a summary table and presented in a graph.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Creative Commons CC BY 4.0 https://creativecommons.org/licenses/by/4.0/
Welding Technology Review (WTR) articles are published open access under a CC BY licence (Creative Commons Attribution 4.0 International licence). The CC BY licence is the most open licence available and considered the industry 'gold standard' for open access; it is also preferred by many funders. This licence allows readers to copy and redistribute the material in any medium or format, and to alter, transform, or build upon the material, including for commercial use, providing the original author is credited.
References
Thomas M.; Białecka B.; Zdebik D. Removal of organic compounds from wastewater originating from the production of printed circuit boards by UV-Fenton method, Archives of Environmental Protection, 2017; Vol. 43(4), 39–49. https://doi.org/10.1515/aep-2017-0044
Ciuła, J.; Generowicz, A.; Gaska, K.; Gronba-Chyła, A. Efficiency Analysis of the Generation of Energy in a Biogas CHP System and its Management in a Waste Landfill – Case Study, J Ecol Eng, 2022, Vol. 23, 143–156.
Gronba-Chyła A.; Generowicz A.; Kwaśnicki P.; Cycoń D.; Kwaśny J.; Grąz K.; Gaska K.; Ciuła J. Determining the Effectiveness of Street Cleaning with the Use of Decision Analysis and Research on the Reduction in Chloride in Waste, Energies, 2022; Vol. 15, 3538. https://doi.org/10.3390/en15103538
Generowicz A.; Gronba-Chyła A.; Kulczycka J.; Harazin P.; Gąska K.; Ciuła J.; Ocłoń, P.; Life Cycle Assessment for the environmental impact assessment of a city’ cleaning system. The case of Cracow (Poland), Journal of Cleaner Production, 2023, Vol. 382, 135184.
Gaska K.; Generowicz A.; Gronba - Chyla A.; Ciula J.; Wiewiórksa I.; Kwaśnicki P.; Mala M.; Chyla K. Artificial Intelligence Methods for Analysis and Optimization of CHP Cogeneration Units Based on Landfill Biogas as a Progress in Improving Energy Efficiency and Limiting Climate Change, Energies, 2023, Vol. 16(15), 5732. https://doi.org/10.3390/en16155732
Kwaśnicki P.; Gronba - Chyla A.; Generowicz A; Ciuła J.; Wiewiórska I.; Gaska K., Alternative method of making electrical connections in the 1st and 3rd generation modules as an effective way to improve module efficiency and reduce production costs, Archives of Thermodynamics, 2023, Vol. 44(3), 179-200. https://doi.org/10.24425/ather.2023.147543
Adamczak S.; Bochnia J.; Kundera C. Stress and strain measurements in static tensile tests, Metrology and Measurement Systems, 2021, 531-540.
Vogt T.; Boden S.; Andruszkiewicz A.; Eckert K.; Eckert S.; Gerbeth G. Detection of gas entrainment into liquid metals, Nuclear Engineering and Design, 2015, Vol. 294, 6-23. https://doi.org/10.1016/j.nucengdes.2015.07.072
Huda Z.; Taib N.I.; Zaharinie T. Characterization of 2024 T3: An aerospace alluminium alloy, Material Chemistry and Physics, 2009, Vol. 113(2-3), 515-517.
Malysheva G.V. Predicting the endurance of adhesive joints, Polym Sci Ser, 2014, Vol. 7(2), 145–148.
Petrova A.P. Main stages of gluing technology, Polymer Science Series D, 2014, Vol. 7, 293–297.
Antipov V.V. The strategy for development of titanium, magnesium, beryllium and aluminum alloys, Aviats. Mater. Tekhnol. Suppl., 2012, Vol. 157–167.
Anikhovskaya L.I.; Pavlovskaya T.G.; Dement’eva P.A.; Petrova A.P. Surface preparation for gluing, Polym. Sci. Ser., 2009, Vol. 2(1), 50–53.
Kuczmaszewski J. Fundamentals of metal-metal adhesive joint design. Polish Academy of Sciences. Lublin Branch, 2006, Lublin, 205.
Voitovich V.A. Methods of surface preparation of products from metals and alloys, Klei. Germetiki. Tekhnol, 2005, Vol. 9, 19–23
Kuczmaszewski J.; Domińczuk J. Właściwości adhezyjne warstwy wierzchniej stali konstrukcyjnych. (Adhesion properties of the surface layer of structural steels) Przegląd Mechaniczny, 2001, Vol. 3, 5-8.
Broniszewski M.; Werle S. CO2 reduction methods and evaluation of proposed energy efficiency improvements in Poland’s large industrial plant. Energy, 2022, Vol. 202, 117704. https://doi.org/10.1016/j.energy.2020.117704
Ingarao G. Manufacturing strategies for efficiency in energy and resources use: The role of metal shaping processes. J Clean Prod, 2017, Vol. 142(1), 2872-2886. https://doi.org/10.1016/j.jclepro.2016.10.182
Wang L.; Shao J.; Digital economy, entrepreneurship and energy efficiency. Energy, 2023, Vol. 269, 126801.
Tang Y.; Mak K.; Zhao YF. A framework to reduce product environmental impact through design optimization for additive manufacturing. J Clean Prod, 2016, Vol. 137, 1560-1572. https://doi.org/10.1016/j.jclepro.2016.06.037
Oehlers D.J; Mohamed Ali M.S.; Luo W., Upgrading continuous reinforced concrete beamsby gluing steel plates their tension faces. Journal of Structural Engineering, 1998, Vol. 124(3).
Deng Y-Q.; Huang Y.; Young B. Tests of concrete-filled high strength steel RHS and SHS beams, Thin-Walled Structures, 2013, Vol. 185, 110567.
Phan D.N.; Rebia R.A.; Saito Y.; Kharagha D.; Khatri M.; Tanaka T.; Lee H.; Kim I-S. Zinc oxide nanoparticles attached to polyacrylonitrile nanofibers with hinokitiol as gluing agent for synergistic antibacterial activities and effective dye removal. Journal of Industrial and Engineering Chemistry, 2020, Vol. 85, 258-268.
Jacquin D.; Guillemot G., A review of microstructural changes occurring during FSW in aluminium alloys and their modelling, Journal of Materials Processing Technology, 2021, Vol. 288, 116706.
Ahmmad M.M.; Sumi Y. Strength and Deformability of corroded steel plates under quasi-static tensile load, J. Mar. Sci. Technol, 2010, Vol. 15(1), 1-15.
Gagliardi F.; Palaia D.; Ambrogio G. Energy consumption and CO2 emissions of joining processes for manufacturing hybrid structures, J of Clean Prod, 2019, Vol. 228, 425-436.
Appuhamy J.M.R.S.; Kaita T.; Ohga M.; Fujii K. Prediction of residual strength of corroded tensile steel plates, Int J Steel Struct, 2011, Vol. 11(1), 65-79.
Chyła K.; Gaska K.; Gronba-Chyła A.; Generowicz A.; Grąz K.; Ciuła J., Advanced Analytical Methods of the Analysis of Friction Stir Welding Process (FSW) of Aluminum Sheets Used in the Automotive Industry, Materials, 2023, Vol. 16(14), 5116. https://doi.org/10.3390/ma16145116
Yucheng Z.; Koichi H.; Sota K.; Kiyoka T.; Wei M.; Atsushi T. Enhanced Adhesion Effect of Epoxy Resin on Metal Surfaces Using Polymer with Catechol and Epoxy Groups, ACS Appl. Polym. Mater, 2020, 2, 4, 1500–1507. https://doi.org/10.1021/acsapm.9b01179
Min Y.; Ming-Bo L.; You-Lu Y.; Gao L.; Fu-Wei M.; Ling-Feng D.; Shan-Jie T. Review of experimental techniques for impact property of adhesive bonds, International Journal of Adhesion and Adhesives, 2020 https://doi.org/10.1016/j.ijadhadh.2020.102620
Budhe S.; Ghumatkar A.; Birajdar N.; Banea M. D. Effect of surface roughness on the adhesive bond strength of aluminium, Applied Adhesion Science, 2015, Vol. 3, 20.
Nasreen A.; Khubab S.; Yasir N., Effect of surface treatments on metal–composite adhesive bonding for high-performance structures: an overview, Composite Interfaces, 2021, Vol. 28, 1221-1256. https://doi.org/10.1080/09276440.2020.1870192
Da Silva L.F.M.; Carbas R.J.C.; Critchlow G.W.; Figueiredo M.A.V.; Brown K. Effect of material, geometry, surface treatment and environment on the shear strength of single lap joints, Int J Adhes Adhes, 2009, Vol. 29(6), 621–632. https://doi.org/10.1016/j.ijadhadh.2009.02.012
Dawei Z., Ying H., Influence of surface roughness and bondline thickness on the bonding performance of epoxy adhesive joints on mild steel substrates, Progress in Organic Coatings, 2021, Vol. 153, 106135. https://doi.org/10.1016/j.porgcoat.2021.106135
Rudawska A.; Zaleski K.; Miturska I.; Skoczylas A. Effect of the Application of Different Surface Treatment Methods on the Strength of Titanium Alloy Sheet Adhesive Lap Joints, Materials, 2019, Vol. 12(24), 4173. https://doi.org/10.3390/ma12244173
Ponsoni J.B. Refill friction stir spot welding of AA6016-T4 aluminum alloy: study of new load-controlled process, 2020, Bachelor Dissertation, Federal University of Sao Carlos, Brasil.
Ozun E.; Ceylan R.; Özgür Bora M.; Çoban O.; Kutluk T., Combined effect of surface pretreatment and nanomaterial reinforcement on the adhesion strength of aluminium joints, International Journal of Adhesion and Adhesives, 2021, Vol. 119, 103274. https://doi.org/10.1016/j.ijadhadh.2022.103274
Loutas T.H.; Kliafa P.M.; Sotiriadis G.; Kostopoulos V. Investigation of the effect of green laser pre-treatment of aluminum alloys through a design-of-experiments approach, Surface and Coatings Technology, 2019, 370-382. https://doi.org/10.1016/j.surfcoat.2019.07.044
Brundage M.P.; Bernstein W.Z.; Hoffenson S.; Chang Q.; Nishi H.; Kliks T.; Morris K.C. Analyzing environmental sustainability methods for use earlier in the product lifecycle, J Clean Prod, 2018, Vol. 187, 877-892.
Critchlow W.C. Surface pretreatments for optimized adhesive bonding, Adhesive Bonding (Second Edition), 2021, 109-132. https://doi.org/10.1016/B978-0-12-819954-1.00010-1
Jinyu H.; Peiran D.; Sujing W.; Hui X.; Yongze S. Study on formability and microstructure evolution of hot deep drawing manufactured 7005 aluminum alloy sheet metal, Material study communications, 2023. https://doi.org/10.1016/j.mtcomm.2023.106794