Fatigue testing of a steel-aluminum welding connector with a titanium interlayer
##plugins.themes.bootstrap3.article.main##
Abstrakt
The paper presents the results of fatigue tests of a steel-aluminum welding transition joint with titanium Grade 1 interlayer. Metallic composite was subjected to microstructural analysis. Factors influencing fatigue durability were analyzed and the basic analysis of fatigue cracks observed during tests was presented.
in polish
Badania zmęczeniowe łącznika spawalniczego stal-aluminium z międzywarstwą tytanu
W pracy zaprezentowano wyniki badań zmęczeniowych łącznika spawalniczego stal-aluminium z międzywarstwą tytanu Grade 1. Badany materiał został poddany analizie mikrostrukturalnej. Przeanalizowano czynniki wpływające na trwałość zmęczeniową oraz zaprezentowano podstawową analizę pęknięć zmęczeniowych zaobserwowanych podczas badań.
Pobrania
##plugins.themes.bootstrap3.article.details##
Creative Commons CC BY 4.0 https://creativecommons.org/licenses/by/4.0/
Artykuły czasopisma Welding Technology Review (Przegląd Spawalnictwa) publikowane są w otwartym dostępie na licencji CC BY (licencja Creative Commons Uznanie autorstwa 4.0 Międzynarodowe). Licencja CC BY jest najbardziej otwartą dostępną licencją i uważaną za „złoty standard” w formule otwartego dostępu; jest również preferowany przez wielu fundatorów badań. Licencja ta umożliwia czytelnikom kopiowanie i redystrybucję materiału na dowolnym nośniku i w dowolnym formacie, a także zmienianie, przekształcanie lub budowanie na nim materiału, w tym do użytku komercyjnego, pod warunkiem wskazania oryginalnego autora.
Bibliografia
Akbari-Mousavi S.A.A., Barrett L.M., Al-Hassani S.T.S.: Explosive welding of metal plates, Journal of Materials Processing Technology, 202, 2008, pp. 224-239.
Crossland B.: Explosive welding of metals and its application, Clarendon Press, 1982.
Findik F.: Recent developments in explosive welding, Materials & Design, 32, 2011, pp. 1081-1093.
Karolczuk A., Kowalski M.: Structural and Fatigue Properties of Titanium- Steel Bimetallic Composite Obtained by Explosive Welding Technology, Key Engineering Materials, 592-593, 2014, 594-597.
Karolczuk A., Kowalski M., Bański R., Żok F.: Fatigue phenomena in explosively welded steel-titanium clad components subjected to push-pull loading, International Journal of Fatigue, 48, 2013, pp. 101-108.
Król S., Bański R., Szulc Z., Gałka A.: Practical aspects of structural tests of titanium-steel bondsmade by explosive cladding and exposed to thermal proces loads, Advances in Material Science, 2007, pp. 50-56.
Rozumek D., Bański R.: Crack growth rate under cyclic bending in the explosively welded steel/titanium bimetals, Materials & Design, Vol. 38, No. 6, 2012, pp. 139-146
Rules for the Classification of Ships, Part D Materials and Welding, RINA, Genova, 2012.
ABS Guide For Fatigue Assessment Of Offshore Structures, American Bureau of Shipping, Huston, 2014.
Rules for the Manufacture, Testing and Certification of Materials, Lloyds Register, Londyn, 2014.
ABS Rules For Materials And Welding Aluminum And Fiber Reinforced Plastics (Frp), American Bureau of Shipping, Huston, 2017.
Approval of the Manufacturing Process of Metallic Materials, Bureau Ve- ritas, Seine Cedex, 2017.