Remanufacturing and surface modification in micro-areas by laser beam and microTIG methods
##plugins.themes.bootstrap3.article.main##
Abstrakt
Over the past years, intensive development of welding technologies that enable precise impact on the workpiece has been observed. The laser technology is the most known and commonly used tool for precise machining, both in terms of obtaining the appropriate geometry and heat distribution. This technology is now easily available, but it still has many limitations in its "basic edition". An attractive alternative in machining micro-areas can be the arc method microTIG, which is a modification of the TIG method.The work compares the effects of cladding of selected pairs of substrate materials using the microTIG method and a laser beam. The results of microscopic tests and hardness measurements of deposits made with a laser beam and the microTIG method are presented. The advantage of cladding with the microTIG method was the possibility of obtaining deposits with a lower dilution of the substrate material in the clad weld compared to laser cladding. On the other hand, clad welds produced with the laser beam had a significantly smaller amount of welding defects.
Pobrania
##plugins.themes.bootstrap3.article.details##
Creative Commons CC BY 4.0 https://creativecommons.org/licenses/by/4.0/
Artykuły czasopisma Welding Technology Review (Przegląd Spawalnictwa) publikowane są w otwartym dostępie na licencji CC BY (licencja Creative Commons Uznanie autorstwa 4.0 Międzynarodowe). Licencja CC BY jest najbardziej otwartą dostępną licencją i uważaną za „złoty standard” w formule otwartego dostępu; jest również preferowany przez wielu fundatorów badań. Licencja ta umożliwia czytelnikom kopiowanie i redystrybucję materiału na dowolnym nośniku i w dowolnym formacie, a także zmienianie, przekształcanie lub budowanie na nim materiału, w tym do użytku komercyjnego, pod warunkiem wskazania oryginalnego autora.
Bibliografia
Chmielewski T., Golański D., The role of welding in the remanufacturing process, Welding International, 2015, Vol. 29(11), 861-864. DOI: 10.1080/09507116.2014.937604 DOI: https://doi.org/10.1080/09507116.2014.937604
Golański D., Chmielewski T., Skowrońska B., Rochalski D., Advanced Applications of Microplasma Welding. Biuletyn Instytutu Spawalnictwa w Gliwicach, 2018, Vol. 62(5), 53-63. DOI: 10.17729/ebis.2018.5/5 DOI: https://doi.org/10.17729/ebis.2018.5/5
Ivanov V. A., Kuksenova L. I., Lapteva V. G., Konyzhev M. E., Application of the Microplasma Method for Strengthening of the Near-Surface Layer of Samples Made from Steel 45, Journal of Machinery Manufacture and Reliability, 2008, Vol. 37(3), 278283. DOI: 10.3103/S1052618807060118 DOI: https://doi.org/10.3103/S1052618807060118
Chigrinova N. M., Application of Microplasma Spark Treatments for Creating Stable Heat-Resistant Barriers on the Surface of Jackets of Thermionic Transducers in Nuclear Reactors, Atomic Energy, 2006, Vol. 100(5).
DOI: 10.1007/S10512-006-0091-7 DOI: https://doi.org/10.1007/s10512-006-0091-7
Buytoz S., Orhan A., Gur A., K., Caligulu U., Microstructural Development of FeCrC and B4C Powder Alloy Coating on Stainless Steel by Plasma-Transferred Arc Weld Surfacing, Arab J Sci Eng, 2013, 38, 21972204,
DOI: 10.1007/s13369-013-0599-9 DOI: https://doi.org/10.1007/s13369-013-0599-9
Chen J.-H., Hua P.-H., Chen P.-N., Chang C.-M., Chen M.-C., Wu W., Characteristics of multi-element alloy clad-ding produced by TIG process, Materials Letters, 2008, Vol. 62(16), 2490-2492.
DOI: 10.1016/j.matlet.2007.12.038 DOI: https://doi.org/10.1016/j.matlet.2007.12.038
Shan J., Dong W., Tan W., Zhang D., Ren J., Dilution rate and microstructure of TIG arc Ni-Al powder surfacing layer, Frontiers of Mechanical Engineering, 2007, 2(1), 2024. DOI 10.1007/s11465-007-0003-0 DOI: https://doi.org/10.1007/s11465-007-0003-0
Lucas W., CHAPTER 5 - Micro-TIG welding, Editor(s): W Lucas, In Woodhead Publishing Series in Welding and Other Joining Technologies, TIG and Plasma Welding, Woodhead Publishing, 1990, pp. 62-64, ISBN 9781855730052;
DOI: 10.1533/9780857093264.1.62 DOI: https://doi.org/10.1533/9780857093264.1.62
Moradi M., Arabi H., Kaplan A. F. H., An experimental investigation of the effects of diode laser surface hardening of AISI 410 stainless steel and comparison with furnace hardening heat treatment, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41:434. DOI: 10.1007/s40430-019-1925-2 DOI: https://doi.org/10.1007/s40430-019-1925-2
Ahn Dong-Gyu, Hardfacing Technologies for Improvement of Wear Characteristics of Hot Working Tools: A Review, International Journal of Precision Engineering and Manufacturing, 2013, Vol. 14(7), 1271-1283,
DOI: 10.1007/s12541-013-0174-z DOI: https://doi.org/10.1007/s12541-013-0174-z
Baraniecki T., Chlebus E., Dziatkiewisz M., Kędzia J., Reiner J., Wierchioch M., System laserowego mikronapawania proszków metali, Welding Technology Review, 2011, Vol. 83(9), 22-26. DOI: 10.26628/ps.v83i9.505 DOI: https://doi.org/10.26628/ps.v83i9.505
Jamkamon K., Yamada K., Inoue T., Sekiya K., Tanaka R., Improved Machinability of High Hardened Die Steel by Using Pulsed Laser Surface Treatment, International Journal of Precision Engineering and Manufacturing, 2019, 20:16671676. DOI: 10.1007/s12541-019-00182-1 DOI: https://doi.org/10.1007/s12541-019-00182-1
Młynarczyk P., Depczyński W., Wybrane właściwości powłok regeneracyjnych wykonanych techniką mikro-spawania na przykładzie wału korbowego z żeliwa ADI, Logistyka, 2015, Vol. 4, 4947-4953.
Napadłek W., Burakowski T., Laber A., Analiza Możliwości Zastosowania Mikronapawania Laserowego w Newralgicznych Strefach Zaworów Wylotowych Silników Spalinowych, TRANSCOMP XIV International Conference, Computer Systems Aided Science, Industry and Transport, 2010, Zakopane.
Freeman R. New welding techniques for aerospace engineering, Welding and Joining of Aerospace Materials Woodhead Publishing Series in Welding and Other Joining Technologies 2012, pp. 3-24.
DOI: 10.1533/9780857095169.1.1 DOI: https://doi.org/10.1533/9780857095169.1.1
Das A., Li D., Williams D., Greenwood D., Joining Technologies for Automotive Battery Systems Manufacturing, World Electr. Veh. J., 2018, Vol. 9(2), 22. DOI: 10.3390/wevj9020022 DOI: https://doi.org/10.3390/wevj9020022
Bîrdeanu A.-V., Ciucă C., Puicea A., Pulsed LASER-(micro)TIG hybrid welding: Process characteristics, Journal of Materials Processing Technology, 2012, Vol. 212(4), 890-902. DOI: 10.1016/j.jmatprotec.2011.11.014 DOI: https://doi.org/10.1016/j.jmatprotec.2011.11.014
Burakowski T., Wierzchoń T., Inżynieria powierzchni metali, 1995, WNT, Warszawa, ISBN: 83-204-1812
Ikhmayies S. i inni., Mechanical Properties and Behavior of Additive Manufactured Stainless Steel 316L, In Book Characterization of Minerals, Metals, and Materials, Springer, Cham, 2017, 577-583, ISSN: 2367-2696, DOI: https://doi.org/10.1007/978-3-319-51382-9_63
DOI: 10.1007/978-3-319-51382-9 DOI: https://doi.org/10.1007/978-3-319-51382-9
STAL NIERDZEWNA - gatunek 1.4462, Materiały katalogowe firmy Demark, Available online: https://www.demark.net.pl
Stal nierdzewna umacniana wydzieleniowo, Materiały katalogowe firmy VIRGAMET, Available online: https://virgamet.pl
Katalog materiałów do spawania laserowego, Materiały katalogowe firmy MEPAC CZ, Available online: https://www.mepac.cz
MT-308L (1.4316), Materiały katalogowe firmy R-Line, Available online: http://www.r-line.pl
NiFe-2, Materiały katalogowe firmy CERTILAS, Available online: http://www.certilas.nl/en/product/nife-2.
Xue X., Pereira A.B., Amorim J., Liao J., Effects of Pulsed Nd:YAG Laser Welding Parameters on Penetration and Microstructure Characterization of a DP1000 Steel Butt Joint, Metals 2017, 7, 292. DOI: 10.3390/met7080292 DOI: https://doi.org/10.3390/met7080292
Steen W., Mazumder J. Laser Material Processing . Springer-Verlag London, 2010, DOI:10.1007/978-1-84996-062-5, ISBN 978-1-84996-062-5 DOI: https://doi.org/10.1007/978-1-84996-062-5