Application of color etching to study the microstructure of TRIP steel after laser remelting

##plugins.themes.bootstrap3.article.main##

Daniel Dobras
Małgorzata Rutkowska-Gorczyca

Abstrakt

TRIP type steels have a multi-phase structure, which includes such phases as: aus-tenite, bainite, ferrite and martensite. The presence of so many co-existing phases creates difficulties in their accurate identification. One of the methods used to identify the components of the microstructure is color metallography. Methods of color met-allography in contrary to some methods of microstructure identification (e.g. TEM, EBSD) are simple to use, cheap and not very time-consuming. However, there are still no detailed recommendations on the use of this method. The paper examines the pos- sibilities of application of colored etching methods, to distinguish the components of the microstructure of the as-received material and the welds of the TRIP type steel. Light microscopy methods were used for the study. The obtained results allow for a qualitative distinction of individual components of the microstructure.

Pobrania

Brak dostępnych danych do wyświetlenia.

##plugins.themes.bootstrap3.article.details##

Jak cytować
[1]
D. Dobras i M. Rutkowska-Gorczyca, „Application of color etching to study the microstructure of TRIP steel after laser remelting”, Weld. Tech. Rev., t. 90, nr 12, grudz. 2018.
Dział
Original Articles

Bibliografia

J. Mazurkiewicz, Struktura i własności stali wysokomanganowych MnSiAlNbTi25-1-3 o zwiększonym zapasie energii odkształcenia plastycznego na zimno, Open Access Library (2013), vol. 7 (25), 12-46.

E. Rusiński, P. Kaczyński, Ocena wytrzymałości połączeń punktowych w cienkościennych strukturach energochłonnych, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław (2014).

S. Krajewski, J. Nowacki, Mikrostruktura i właściwości stali o wysokiej wytrzymałości AHSS, Welding Technology Review (2011), vol. 7, 22-27.

J. Senkara, Współczesne stale karoseryjne dla przemysłu motoryzacyjnego i wytyczne technologiczne ich zgrzewania, Welding Technology Review (2009), vol. 11, 3-7.

D. Rutkowski, A. Ambroziak, Effect of laser strengthening on the mechanical properties of car body steels presently used in automotive industry, Biuletyn Instytutu Spawalnictwa (2014), vol. 5, 49-57.

E. Leunis, D. Hanlon, A. Rijkenberg, C. Scott, J. Drillet, R. Hackl, Quantita- tive phase analysis of multi-phase steels — PHAST, European Communities, Luxembourg (2006).

G. F. Vander Voort, ASM Handbook, Volume 9: Metallography and Microstructures, ASM International, Novelty (OH) (2004). DOI: https://doi.org/10.31399/asm.hb.v09.9781627081771

E. Weck, E. Leistner, Metallographic Instructions for Colour Etching by Immersion, Part I: Klemm Colour Etching, D.V.S. Verlag GmbH, Dusseldorf, (1982).

A. K. De, J. G. Speer, D.K. Matlock, Color Tint-Etching for Multiphase Steels, Advanced materials and processes (2003), vol. 2, 27-30.

R. Haimann, Metaloznawstwo, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław (1980).

S. Staub, Atlas mikrostruktur stali: mikroskop elektronowy, Śląsk, Katowice (1970).

M. St. Węglowski, S. Stano, G. Michta, W. Osuch, Budowa strukturalna złączy ze stali DP spawanych wiązką laserową, XXXVII Szkoła Inżynierii Materiałowej Kraków-Krynica (2009), 304-309.

G. Krauss, S. W.Thompson, Ferritic microstructures in continuously cooled low- and ultralow- carbon steels, ISIJ International (1995), vol. 35, 937-945.

L. Zhaoa, M. K. Wibowoa, M. J. M. Hermansb, S. M. C. Bohemenb, J. Sietsmab, Retention of austenite in the welded microstructure of a 0.16C--1.6Mn-1.5Si (wt.%) TRIP steel, Journal of Materials Processing Technology (2009), vol. 209, 5286-5292.