The influence of welding heat input on the quality and properties of high strength low-alloy dissimilar steel butt joints

##plugins.themes.bootstrap3.article.main##

Jacek Tomków
Jacek Haras

Abstrakt

W pracy przedstawiono wyniki badań niszczących i nieniszczących dwuimiennych złączy doczołowych wykonanych ze stali o podwyższonej wytrzymałości o zbliżonych właściwościach mechanicznych S460ML i S460N, które znacząco różnią się wartością równoważnika węgla Ce. Złącza wykonano z zastosowaniem różnych wartości ilości wprowadzonego ciepła dla poszczególnych ściegów. Zostały one poddane badaniom nieniszczącym: wizualnym, penetracyjnym, radiograficznym oraz ultradźwiękowym. Następnie wykonano statyczną próbę rozciągania, próbę gięcia, badania udarnościowe oraz pomiary twardości metodą Vickersa HV10. Wyniki badań pokazały, że spawanie większą energią liniową ma znaczący wpływ na własności mechaniczne złączy badanych stali złącze wykonane wyższymi wartościami charakteryzowało się lepszymi własnościami mechanicznymi.

Pobrania

Brak dostępnych danych do wyświetlenia.

##plugins.themes.bootstrap3.article.details##

Jak cytować
[1]
J. Tomków i J. Haras, „The influence of welding heat input on the quality and properties of high strength low-alloy dissimilar steel butt joints”, Weld. Tech. Rev., t. 92, nr 2, s. 15–23, mar. 2020.
Dział
Original Articles

Bibliografia

Qiang X., Bijlaard F., Kolstein H., Elevated-temperature mechanical properties of high strength structural steel S460N: Experimental study and recommendations for fire-resistance design. Fire Safety Journal, 2013, Vol. 55, 15-21. http://dx.doi.org/10.1016/j.firesaf.2012.10.008 DOI: https://doi.org/10.1016/j.firesaf.2012.10.008

Fydrych D., Rogalski G., Tomków J., Łabanowski J., Skłonność do tworzenia pęknięć zimnych złączy ze stali S420G2+M spawanej pod wodą metodą mokrą. Welding Technology Review, 2013, Vol. 85(10), 65-71. http://dx.doi.org/10.26628/wtr.v85i10.192

Liu Z., Olivares R. O., Lei Y., Garcia C. I., Wang G., Microstructural characterization and recrystallization kinetics modeling of annealing cold-rolled vanadium microalloyed HSLA steels. Journal of Alloys and Compounds, 2016, Vol. 679, 293-301. https://doi.org/10.1016/j.jallcom.2016.04.057 DOI: https://doi.org/10.1016/j.jallcom.2016.04.057

Dai H-L., Jiang H-J., Dai T., Xu W-L., Luo A-H., Investigarion on the influence of damage to springback of U-shape HSLA steel plates. Journal of Alloys and Compounds, 2017, Vol. 708, 575-586. https://doi.org/10.1016/j.jallcom.2017.02.270 DOI: https://doi.org/10.1016/j.jallcom.2017.02.270

Górka J., Ozgowicz A., Matusek K., Robotic Spot Welding of DOCOL 1200M Steel. Welding Technology Review, 2019, Vol. 91(4), 33-38. https://doi.org/10.26628/wtr.v91i4.1007 DOI: https://doi.org/10.26628/wtr.v91i4.1007

Tomków J., Janeczek A, Underwater in situ local heat treatment by additional stitches for improving the weldability of steel. Applied Sciences, 2020, Vol. 10(5), 1823. https://doi.org/10.3390/app10051823 DOI: https://doi.org/10.3390/app10051823

Sharma S. K., Maheshwari S., Arc characterization study for submerged arc welding of HSLA (API X80) steel. Journal of Mechanical Science and Technology, 2017, Vol. 31(3), 1383-1390. https://doi.org/10.1007/s12206-017-0238-6 DOI: https://doi.org/10.1007/s12206-017-0238-6

Mert T., Tümer M., Kerimak Z. M., Investigations on mechanical strength and microstructure of multi-pass welded S690QL HSLA steel using MAG and FCAW. Practical Metallography, 2019, Vol. 56(10), 634-654. https://doi.org/10.3139/147.110578 DOI: https://doi.org/10.3139/147.110578

Zhang S., Sun J., Zhu M., Zhang L., Nie P., Li Z., Fiber laser welding of HSLA steel by autogenous laser welding and autogenous laser welding with cold wire methods. Journal of Materials Processing Technology, 2020, Vol 275, 116353. https://doi.org/10.1016/j.jmatprotec.2019.116353 DOI: https://doi.org/10.1016/j.jmatprotec.2019.116353

Šebestová H., Horník P., Mrňa L., Jambor M., Horník V., Pokorný P., Hutař P., Ambrož O., Doležal P., Fatigue properties of laser and hybrid laser-TIG welds of thermos-mechanically rolled steels. Materials Science and Engineering: A, 2020, Vol. 772, 138780. https://doi.org/10.1016/j.msea.2019.138780 DOI: https://doi.org/10.1016/j.msea.2019.138780

Skowrońska B., Chmielewski T., Pachla W., Kulczyk M., Skiba J., Presz W., Friction weldability of UFG 316L stainless steel, Archives of Metallurgy and Materials, 2019, Vol. 64(3), 1051-1058. https://doi.org/10.24425/amm.2019.129494

Kannengiesser T., Boellinghaus T., Cold cracking tests an overview of present technologies and applications. Welding in the World, 2013, Vol. 57, 3-37. https://doi.org/10.1007/s40194-012-0001-7 DOI: https://doi.org/10.1007/s40194-012-0001-7

Pandey C., Saini N., Mahapatra M. M., Kumar P., Hydrogen induced cold cracking of creep resistance ferritic P91 steel for different diffusible hydrogen levels in deposited metal. International Journal of Hydrogen Energy, 2016, Vol. 41(39), 17695-17712. https://doi.org/10.1016/j.ijhydene.2016.07.202 DOI: https://doi.org/10.1016/j.ijhydene.2016.07.202

Wang J., Lu S., Li Y., Hu Q., Rong L., Li D., Cold cracking sensitivity of a newly developed 9Cr2WVTa steel. Journal of Materials Engineering and Performance, 2017, Vol. 26, 258-267. https://doi.org/10.1007/s11665-016-2432-6 DOI: https://doi.org/10.1007/s11665-016-2432-6

Tomków J., Fydrych D., Rogalski G., Łabanowski J., Effect of the welding environment and storage rime of electrodes on the diffusible hydrogen content in deposited metal. Revista de Metalurgia, 2019, Vol. 55(10), E140. https://doi.org/10.3989/revmetalm.140 DOI: https://doi.org/10.3989/revmetalm.140

Tomków J., Fydrych D., Rogalski G., Role of bead sequence in underwater welding. Materials, 2019, Vol. 12(20), 3372. https://doi.org/10.3390/ma12203372 DOI: https://doi.org/10.3390/ma12203372

Kempen K., Vrancken B., Buls S., Thijs L., Humbeeck J.V., Kruth J.P., Selective laser melting of crack-free high density M2 high speed steel parts by baseplate preheating. Journal of Manufacturing Science and Engineering, 2014, Vol. 136(6), 061026. https://doi.org/10.1115/1.4028513 DOI: https://doi.org/10.1115/1.4028513

Hu L. H., Huang J., Li Z. G., Wu Y. X., Effects of preheating temperature on cold cracks, microstructures and properties of high power laser hybrid welded 10Ni3CrMoV steel. Materials&Design, 2011, Vol. 32(4), 1931-1939. https://doi.org/10.1016/j.matdes.2010.12.007 DOI: https://doi.org/10.1016/j.matdes.2010.12.007

Zhang Y., Zhang H., Li J., Liu W., Effect of heat input on microstructure and toughness of coarse grain heat affected zone in Nb microalloyed HSLA steels. Journal of Iron and Steel Research International, 2009, Vol. 16, 73-80. https://doi.org/10.1016/S1006-706X(10)60014-3 DOI: https://doi.org/10.1016/S1006-706X(10)60014-3

Lahtinen T., Vilaça P., Peura P., Mehtonen S., MAG welding tests of modern high strength steels with minimum yield strength of 700 MPa. Applied Science, 2019, Vol. 9(5), 1031. https://doi.org/10.3390/app9051031 DOI: https://doi.org/10.3390/app9051031

Górka J., Kotarska A., MAG welding of 960QL quenched and tempered steel. IOP Conference Series: Materials Science and Engineering, 2019. Vol. 591, 012017. https://doi.org/10.1088/1757-899X/591/1/012017 DOI: https://doi.org/10.1088/1757-899X/591/1/012017

Min D., Hin-hua T., Feng-qui L., Shun Y., Welding of quenched and tempered steeld with high-spin arc narrow gap MAG system. The International Journal of Advanced Manufacturing Technology, 2011, Vol. 55(5-8), 527-533. https://doi.org/10.1007/s00170-010-3052-1 DOI: https://doi.org/10.1007/s00170-010-3052-1

Tomków J., Łabanowski J., Fydrych D., Rogalski G., Cold cracking of S460N steel in water environment. Polish Maritime Research, 2018, Vol. 25, 131-136. https://doi.org/10.2478/pomr-2018-0104 DOI: https://doi.org/10.2478/pomr-2018-0104

Tomków J., Rogalski G., Fydrych D., Łabanowski J., Advantages of the application of the temper bead welding technique during wet welding. Materials, 2019, Vol. 12(6), 915. https://doi.org/10.3390/ma12060915 DOI: https://doi.org/10.3390/ma12060915

Tomków J., Tomków M., The influence of the carbon equivalent on the weldability of high-strength low-alloy steel in the water environment. Welding Technology Review, 2019, Vol. 91(5), 43-49.

https://doi.org/10.26628/wtr.v91i5.1001 DOI: https://doi.org/10.26628/wtr.v91i5.1001

Inne teksty tego samego autora