Support with mechanical vibrations of welding processes review of own research
Main Article Content
Abstract
The article discusses the most important original achievements in the use of high-power mechanical vibrations with low and ultrasonic frequency in various welding processes such as MIG, MAG, TIG, RW, LW, diffusion welding and brazing in relation to various basic materials such as structural steel and aluminum alloys. Mechanical vibrations were introduced by means of ultrasonic vibrating systems and using the shot-blasting process, as well as acoustic influence. As part of the comparative research, the structure and hardness analysis of HV0.1 was presented. The obtained results indicate that both low-frequency and ultrasonic frequency vibrations significantly change the properties of the resulting structures affected by mechanical vibrations. The scale of these changes varies depending on the frequency and parameters specific to each of the welding processes used. The obtained results allow us to conclude that the skillful application of mechanical vibrations accompanying welding processes can contribute to the reduction of grain sizes, to change the depth or width of penetration and to lowering hardness in the sensitive heat affected zone area.
Downloads
Article Details
Creative Commons CC BY 4.0 https://creativecommons.org/licenses/by/4.0/
Welding Technology Review (WTR) articles are published open access under a CC BY licence (Creative Commons Attribution 4.0 International licence). The CC BY licence is the most open licence available and considered the industry 'gold standard' for open access; it is also preferred by many funders. This licence allows readers to copy and redistribute the material in any medium or format, and to alter, transform, or build upon the material, including for commercial use, providing the original author is credited.
References
Momot A., Intensyfikacja procesu zgrzewania dyfuzyjnego za pomocą drgań ultradźwiękowych, praca dy-plomowa magisterska, promotor: dr inż. Pikor N., konsultacje: Krajewski A., Zakład Inżynierii Spajania, Poli-technika Warszawska, Warszawa, 1992
Olesińska W., Krajewski A., Brazing of alumina to steel using ultrasonic intensification, Proceedings of the EUROMAT97 5th European Conference on Advanced Materials and Processes and Applications, vol. 2, 661-664, Maastricht, 1997
Krajewski A. Cegielski P., Hudycz M., Kolasa A., Skrzyniecki K., Nakładanie powłok i spajanie z wykorzysta-niem pulsacyjnego mikrozgrzewania oporowego, Przegląd Spawalnictwa, 2009, Vol. 80(11), 73-77.
Krajewski A., Wpływ drgań mechanicznych wykorzystywanych w procesach spajania na właściwości połą-czeń, Prace naukowe Politechniki Warszawskiej, Rozprawa habilitacyjna, zeszyt 258, Oficyna Wydawnicza Politechniki Warszawskiej, 202 s., ISBN 978-83-7814-118-1
Olesińska W., Krajewski A., grant KBN 7S20100605, 1997
Weite W., Influence of vibration frequency on solidification of weldments, Scripta mater. 42, pp. 661-665, 2000 DOI: https://doi.org/10.1016/S1359-6462(99)00416-9
Devine J., Ultrasonic Welding Plays Key Role in Photovoltaic Cell Assembly, Welding Journal, 2007, Vol. 86, 52, 2007.
Evans A. G., Bartlett A., Davis J. B., Flinn B. D., Turner M., Reimanis I. E., The fracture resistance of met-al/ceramic/intermetallic interfaces, Scripta Metallurgica et Materialia, 1991, Vol. 25(5), 1003-1010, https://doi.org/10.1016/0956-716X(91)90492-J DOI: https://doi.org/10.1016/0956-716X(91)90492-J
Watanabe T., Shiroki M., Yanagisawa A., Sasaki T., Improvement of mechanical properties of ferritic stainless steel weld metal by ultrasonic vibration, Journal of Materials Processing Technology, Niigata, Japan 27 May 2010, https://doi.org/10.1016/j.jmatprotec.2010.05.015 DOI: https://doi.org/10.1016/j.jmatprotec.2010.05.015
Krajewski A., Wspomaganie procesów spawalniczych drganiami mechanicznymi, Zeszyt Naukowy nr 229, s. 3351 (seria Mechanika), ISSN 0137-2335, pt. Innowacje w technikach spajania, Oficyna Wydawnicza Poli-techniki Warszawskiej, 2009
Cegielski P., Hudycz M., Kolasa A., Krajewski A., Skrzyniecki K., Zastosowanie wirtualnych przyrządów po-miarowych do badania urządzeń i procesów spawalniczych, Zeszyt Naukowy nr 229 s. 115124 (seria Me-chanika), ISSN 0137-2335, pt. Innowacje w technikach spajania, Oficyna Wydawnicza Politechniki Warszaw-skiej, 2009
Krajewski A., Badanie wpływu pola ultradźwiękowego na budowę i własności struktur spawalniczych, Ze-szyt Naukowy nr 230 s. 7182 (seria Mechanika), ISSN 0137-2335, pt. Spajanie materiałów we współczesnej technice, Oficyna Wydawnicza Politechniki Warszawskiej, 2010
Krajewski A., Drgania mechaniczne w procesach spawalniczych, Przegląd Spawalnictwa, 2011, Vol. 82(6), 3742. https://doi.org/10.26628/wtr.v83i6.582
Krajewski A., Wpływ fazy drgań ultradźwiękowych na strukturę i twardość napoin stopu aluminium 2017A, Przegląd Spawalnictwa, 2013, Vol. 85(1), 6166. https://doi.org/10.26628/ps.v85i1.288 DOI: https://doi.org/10.26628/ps.v85i1.288
Krajewski A., Włosiński W., Chmielewski T., Kołodziejczak P., Ultrasonic-vibration assisted arc-welding of aluminum alloys, Bulletin of the Polish Academy of Science, 2012, vol.60(4), 841852. https://doi.org/10.2478/v10175-012-0098-2 DOI: https://doi.org/10.2478/v10175-012-0098-2
Krajewski, A.; Kołodziejczak, P.; Wang, X., Impact of mechanical vibrations introduced by up blasting on the structure and hardness of welds on P235GH steel during MAG welding process. Weld. Technol. Rev., 2020, Vol. 91(12), 2532. https://doi.org/10.26628/wtr.v91i12.1079 DOI: https://doi.org/10.26628/wtr.v91i12.1079
Wuenschell, J. K., Helvajian, H., Enhanced laser crystallization of thin film amorphous molybdenum disulfide (MoS2) by means of pulsed laser ultrasound, Optics Express, 2019, Vol. 27(4). https://doi.org/10.1364/OE.27.005859 DOI: https://doi.org/10.1364/OE.27.005859
Chen C, Fan C, Cai X, Lin S, Yang C, Analysis of droplet transfer, weld formation and microstructure in Al-Cu alloy bead welding joint with pulsed ultrasonic-GMAW method, Journal of Materials Processing Tech. 2019, https://doi.org/10.1016/j.jmatprotec.2019.03.030 DOI: https://doi.org/10.1016/j.jmatprotec.2019.03.030
Krajewski A., Klekot G., Cybulak M., Kołodziejczak P., A novel method of supporting the laser welding process with mechanical acoustic vibrations, Materials, 2020, Vol. 13(18,) 1-18. https://doi.org/10.3390/ma13184179 DOI: https://doi.org/10.3390/ma13184179
Tarasov, S. Y.; Vorontsov, A. V.; Fortuna, S. V.; Rubtsov, V. E.; Krasnoveikin, V. A.; Kolubaev, E. A., Ultrasonic-assisted laser welding on AISI 321 stainless steel. Weld. World, 2019, 63, 875886, https://doi.org/10.1007/s40194-019-00716-1 DOI: https://doi.org/10.1007/s40194-019-00716-1
Singh, P. K.; Kumar, S. D.; Patel D.; Prasad, S. B., Optimization of vibratory welding process parameters using response surface methodology. J. Mech. Sci. Technol. 2017, 31, 24872495, https://doi.org/10.1007/s12206-017-0446-0 DOI: https://doi.org/10.1007/s12206-017-0446-0
Klein, T.; Vicanek, M.; Simon, G., Forced oscillations of the keyhole in penetration laser beam welding. J. Phys. D Appl. Phys. 1996, Vol. 29, 322332, https://doi.org/10.1088/0022-3727/29/2/008 DOI: https://doi.org/10.1088/0022-3727/29/2/008
Semak, V.V.; A Hopkins, J.; McCay, M.H.; McCay, T.D., Melt pool dynamics during laser welding. J. Phys. D Appl. Phys. 1995, Vol. 28, 24432450, https://doi.org/10.1088/0022-3727/28/12/008 DOI: https://doi.org/10.1088/0022-3727/28/12/008
Courtois, M.; Carin, M.; Le Masson, P.; Gaied, S.; Balabane, M., A complete model of keyhole and melt pool dy-namics to analyze instabilities and collapse during laser welding. J. Laser Appl. 2014, Vol. 26, 042001, https://doi.org/10.2351/1.4886835 DOI: https://doi.org/10.2351/1.4886835