Support with mechanical vibrations of welding processes review of own research

Main Article Content

Arkadiusz Krajewski
Paweł Kołodziejczak
Paweł Cegielski
Jarosław Grześ

Abstract

The article discusses the most important original achievements in the use of high-power mechanical vibrations with low and ultrasonic frequency in various welding processes such as MIG, MAG, TIG, RW, LW, diffusion welding and brazing in relation to various basic materials such as structural steel and aluminum alloys. Mechanical vibrations were introduced by means of ultrasonic vibrating systems and using the shot-blasting process, as well as acoustic influence. As part of the comparative research, the structure and hardness analysis of HV0.1 was presented. The obtained results indicate that both low-frequency and ultrasonic frequency vibrations significantly change the properties of the resulting structures affected by mechanical vibrations. The scale of these changes varies depending on the frequency and parameters specific to each of the welding processes used. The obtained results allow us to conclude that the skillful application of mechanical vibrations accompanying welding processes can contribute to the reduction of grain sizes, to change the depth or width of penetration and to lowering hardness in the sensitive heat affected zone area.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
A. Krajewski, P. Kołodziejczak, P. Cegielski, and J. Grześ, “Support with mechanical vibrations of welding processes review of own research”, Weld. Tech. Rev., vol. 93, no. 3, pp. 57–73, Aug. 2021.
Section
Review

References

Momot A., Intensyfikacja procesu zgrzewania dyfuzyjnego za pomocą drgań ultradźwiękowych, praca dy-plomowa magisterska, promotor: dr inż. Pikor N., konsultacje: Krajewski A., Zakład Inżynierii Spajania, Poli-technika Warszawska, Warszawa, 1992

Olesińska W., Krajewski A., Brazing of alumina to steel using ultrasonic intensification, Proceedings of the EUROMAT97 5th European Conference on Advanced Materials and Processes and Applications, vol. 2, 661-664, Maastricht, 1997

Krajewski A. Cegielski P., Hudycz M., Kolasa A., Skrzyniecki K., Nakładanie powłok i spajanie z wykorzysta-niem pulsacyjnego mikrozgrzewania oporowego, Przegląd Spawalnictwa, 2009, Vol. 80(11), 73-77.

Krajewski A., Wpływ drgań mechanicznych wykorzystywanych w procesach spajania na właściwości połą-czeń, Prace naukowe Politechniki Warszawskiej, Rozprawa habilitacyjna, zeszyt 258, Oficyna Wydawnicza Politechniki Warszawskiej, 202 s., ISBN 978-83-7814-118-1

Olesińska W., Krajewski A., grant KBN 7S20100605, 1997

Weite W., Influence of vibration frequency on solidification of weldments, Scripta mater. 42, pp. 661-665, 2000 DOI: https://doi.org/10.1016/S1359-6462(99)00416-9

Devine J., Ultrasonic Welding Plays Key Role in Photovoltaic Cell Assembly, Welding Journal, 2007, Vol. 86, 52, 2007.

Evans A. G., Bartlett A., Davis J. B., Flinn B. D., Turner M., Reimanis I. E., The fracture resistance of met-al/ceramic/intermetallic interfaces, Scripta Metallurgica et Materialia, 1991, Vol. 25(5), 1003-1010, https://doi.org/10.1016/0956-716X(91)90492-J DOI: https://doi.org/10.1016/0956-716X(91)90492-J

Watanabe T., Shiroki M., Yanagisawa A., Sasaki T., Improvement of mechanical properties of ferritic stainless steel weld metal by ultrasonic vibration, Journal of Materials Processing Technology, Niigata, Japan 27 May 2010, https://doi.org/10.1016/j.jmatprotec.2010.05.015 DOI: https://doi.org/10.1016/j.jmatprotec.2010.05.015

Krajewski A., Wspomaganie procesów spawalniczych drganiami mechanicznymi, Zeszyt Naukowy nr 229, s. 3351 (seria Mechanika), ISSN 0137-2335, pt. Innowacje w technikach spajania, Oficyna Wydawnicza Poli-techniki Warszawskiej, 2009

Cegielski P., Hudycz M., Kolasa A., Krajewski A., Skrzyniecki K., Zastosowanie wirtualnych przyrządów po-miarowych do badania urządzeń i procesów spawalniczych, Zeszyt Naukowy nr 229 s. 115124 (seria Me-chanika), ISSN 0137-2335, pt. Innowacje w technikach spajania, Oficyna Wydawnicza Politechniki Warszaw-skiej, 2009

Krajewski A., Badanie wpływu pola ultradźwiękowego na budowę i własności struktur spawalniczych, Ze-szyt Naukowy nr 230 s. 7182 (seria Mechanika), ISSN 0137-2335, pt. Spajanie materiałów we współczesnej technice, Oficyna Wydawnicza Politechniki Warszawskiej, 2010

Krajewski A., Drgania mechaniczne w procesach spawalniczych, Przegląd Spawalnictwa, 2011, Vol. 82(6), 3742. https://doi.org/10.26628/wtr.v83i6.582

Krajewski A., Wpływ fazy drgań ultradźwiękowych na strukturę i twardość napoin stopu aluminium 2017A, Przegląd Spawalnictwa, 2013, Vol. 85(1), 6166. https://doi.org/10.26628/ps.v85i1.288 DOI: https://doi.org/10.26628/ps.v85i1.288

Krajewski A., Włosiński W., Chmielewski T., Kołodziejczak P., Ultrasonic-vibration assisted arc-welding of aluminum alloys, Bulletin of the Polish Academy of Science, 2012, vol.60(4), 841852. https://doi.org/10.2478/v10175-012-0098-2 DOI: https://doi.org/10.2478/v10175-012-0098-2

Krajewski, A.; Kołodziejczak, P.; Wang, X., Impact of mechanical vibrations introduced by up blasting on the structure and hardness of welds on P235GH steel during MAG welding process. Weld. Technol. Rev., 2020, Vol. 91(12), 2532. https://doi.org/10.26628/wtr.v91i12.1079 DOI: https://doi.org/10.26628/wtr.v91i12.1079

Wuenschell, J. K., Helvajian, H., Enhanced laser crystallization of thin film amorphous molybdenum disulfide (MoS2) by means of pulsed laser ultrasound, Optics Express, 2019, Vol. 27(4). https://doi.org/10.1364/OE.27.005859 DOI: https://doi.org/10.1364/OE.27.005859

Chen C, Fan C, Cai X, Lin S, Yang C, Analysis of droplet transfer, weld formation and microstructure in Al-Cu alloy bead welding joint with pulsed ultrasonic-GMAW method, Journal of Materials Processing Tech. 2019, https://doi.org/10.1016/j.jmatprotec.2019.03.030 DOI: https://doi.org/10.1016/j.jmatprotec.2019.03.030

Krajewski A., Klekot G., Cybulak M., Kołodziejczak P., A novel method of supporting the laser welding process with mechanical acoustic vibrations, Materials, 2020, Vol. 13(18,) 1-18. https://doi.org/10.3390/ma13184179 DOI: https://doi.org/10.3390/ma13184179

Tarasov, S. Y.; Vorontsov, A. V.; Fortuna, S. V.; Rubtsov, V. E.; Krasnoveikin, V. A.; Kolubaev, E. A., Ultrasonic-assisted laser welding on AISI 321 stainless steel. Weld. World, 2019, 63, 875886, https://doi.org/10.1007/s40194-019-00716-1 DOI: https://doi.org/10.1007/s40194-019-00716-1

Singh, P. K.; Kumar, S. D.; Patel D.; Prasad, S. B., Optimization of vibratory welding process parameters using response surface methodology. J. Mech. Sci. Technol. 2017, 31, 24872495, https://doi.org/10.1007/s12206-017-0446-0 DOI: https://doi.org/10.1007/s12206-017-0446-0

Klein, T.; Vicanek, M.; Simon, G., Forced oscillations of the keyhole in penetration laser beam welding. J. Phys. D Appl. Phys. 1996, Vol. 29, 322332, https://doi.org/10.1088/0022-3727/29/2/008 DOI: https://doi.org/10.1088/0022-3727/29/2/008

Semak, V.V.; A Hopkins, J.; McCay, M.H.; McCay, T.D., Melt pool dynamics during laser welding. J. Phys. D Appl. Phys. 1995, Vol. 28, 24432450, https://doi.org/10.1088/0022-3727/28/12/008 DOI: https://doi.org/10.1088/0022-3727/28/12/008

Courtois, M.; Carin, M.; Le Masson, P.; Gaied, S.; Balabane, M., A complete model of keyhole and melt pool dy-namics to analyze instabilities and collapse during laser welding. J. Laser Appl. 2014, Vol. 26, 042001, https://doi.org/10.2351/1.4886835 DOI: https://doi.org/10.2351/1.4886835