Significance of the brazing gap in the brazing of aluminium heat exchangers for automotive industry
Main Article Content
Abstract
The paper presents the influence of the brazing gap width on the structure of bonded joints during the production of aluminum heat exchangers, using brazing technology, in tunnel furnaces with controlled atmosphere. Based on the wedge test, an analysis and qualitative assessment of brazed joints was made for the changing width of the brazing gap and the filler metal used. For the received brazed joints, metallographic tests were carried out using light and electron microscopy (SEM) and microhardness measurements in the characteristic areas of brazed joints. Based on the results obtained, the recommended width of the brazing gap was determined.
Downloads
Article Details
Creative Commons CC BY 4.0 https://creativecommons.org/licenses/by/4.0/
Welding Technology Review (WTR) articles are published open access under a CC BY licence (Creative Commons Attribution 4.0 International licence). The CC BY licence is the most open licence available and considered the industry 'gold standard' for open access; it is also preferred by many funders. This licence allows readers to copy and redistribute the material in any medium or format, and to alter, transform, or build upon the material, including for commercial use, providing the original author is credited.
References
Mirski Z., Pabian J., Modern trends in production of brazed heat exchangers for automotive industry. Welding Technology Review, 2017, Vol. 89(8), 5-12. https://doi.org/10.26628/ps.v89i8.798 DOI: https://doi.org/10.26628/ps.v89i8.798
Controlled Atmosphere Aluminum Brazing Systems - SECO/WARWICK. Available online: https://www.secowarwick.com/wp-content/uploads/assets/Documents/Brochures/Controlled-Atm-Alum- Brazing-Systems.pdf (accessed on 12-02-2020).
Mirski Z., Granat K., Misiek A., Brazing of aluminum heat exchangers in the automotive industry. Spajanie materiałów konstrukcyjnych, 2015, Vol. 28(2), 3234.
Pilarczyk J. (editor), Engineer's Guide, Vol. 2, Welding., WNT: Warszawa, Poland, 2014,
The NOCOLOK® Flux Brazing Process - Solvay Flux GmbH. Available online: https://www.solvay.com/sites/g/files/srpend221/files/tridion/documents/NOCOLOK-Brazing-Process-2018-02.pdf (accessed on 12-02-2020).
Mirski Z., Control of the width of brazed joint clearance in the processes of joining dissimilar materials. Monography No 22, Prace Naukowe Instytutu Technologii Maszyn i Automatyzacji Politechniki Wrocławskiej, Wrocław, Poland, 2000.
NOCOLOK® Encyclopedia Solvay Flux GmbH. Available online: https://www.aluminium-brazing.com/sponsor/nocolok/Files/PDFs/NOCOLOK-Encyclopedia-2013.pdf (accessed on 12-02-2020).
Wasilewski P., Silumines - modification and its influence on structure and properties, Monography No 21, Polish Academy of Sciences: Katowice, Poland, 1995.
Velu P.K., Study of the effect of brazing on mechanical properties of aluminum alloys for automotive heat exchangers. Masters thesis, Purdue University, Purdue (IN), May 2017.
Nyln M., Gustavsson U., Hutchinson W.B., Karlsson Ã…., Johansson H., Mechanisms of erosion during brazing of aluminium alloys. Materials Science Forum, 2002, Vol. 396-402, 15851590. https://doi.org/10.4028/www.scientific.net/MSF.396-402.1585 DOI: https://doi.org/10.4028/www.scientific.net/MSF.396-402.1585
Nyln M., Gustavsson U., Hutchinson W.B., Örtnäs A., Mechanistic Studies of Brazing in Clad Aluminium Alloy. Materials Science Forum, 1996, Vol. 217-222, 17031708. https://doi.org/10.4028/www.scientific.net/MSF.217 222.1703
Iordache D.M., Ducu C.M., Niţu E.L., Iacomi D., Plăiaşu A.G., Preliminary study on the microstructure and mechanical properties of dissimilar joints of aluminum alloy and pure copper by FSW. MATEC Web of Conferences, 2017, Vol. 112, 1-6, 04005. DOI: https://doi.org/10.1051/matecconf/201711204005
Frąckowiak E., Mroziński W., Using flame brazing technology for producing aluminum automotive heat exchangers. Welding Technology Review, 2007, Vol. 79(9), 57-62.