The influence of welding heat input on the quality and properties of high strength low-alloy dissimilar steel butt joints
Main Article Content
Abstract
The paper presents the results of non-destructive and destructive tests od dissimilar high-strength low-alloy S460ML and S460N butt joints. These steels are characterized by similar mechanical properties, but their carbon equivalent CeIIW is much different. The joints were made using different values of heat input for each welding bead. They were tested by non-destructive methods: visual, penetrant, radiographic and ultrasonic tests. Then, the destructive tests were made: static tensile test, bending test, impact test and Vickers HV10 hardness measurements. The results of prepared examinations showed, that welding with higher heat input has significant impact on the mechanical properties of the dissimilar steel joints the joint welded with bigger heat input was characterized by better mechanical properties.
Downloads
Article Details
Creative Commons CC BY 4.0 https://creativecommons.org/licenses/by/4.0/
Welding Technology Review (WTR) articles are published open access under a CC BY licence (Creative Commons Attribution 4.0 International licence). The CC BY licence is the most open licence available and considered the industry 'gold standard' for open access; it is also preferred by many funders. This licence allows readers to copy and redistribute the material in any medium or format, and to alter, transform, or build upon the material, including for commercial use, providing the original author is credited.
References
Qiang X., Bijlaard F., Kolstein H., Elevated-temperature mechanical properties of high strength structural steel S460N: Experimental study and recommendations for fire-resistance design. Fire Safety Journal, 2013, Vol. 55, 15-21. http://dx.doi.org/10.1016/j.firesaf.2012.10.008 DOI: https://doi.org/10.1016/j.firesaf.2012.10.008
Fydrych D., Rogalski G., Tomków J., Łabanowski J., Skłonność do tworzenia pęknięć zimnych złączy ze stali S420G2+M spawanej pod wodą metodą mokrą. Welding Technology Review, 2013, Vol. 85(10), 65-71. http://dx.doi.org/10.26628/wtr.v85i10.192
Liu Z., Olivares R. O., Lei Y., Garcia C. I., Wang G., Microstructural characterization and recrystallization kinetics modeling of annealing cold-rolled vanadium microalloyed HSLA steels. Journal of Alloys and Compounds, 2016, Vol. 679, 293-301. https://doi.org/10.1016/j.jallcom.2016.04.057 DOI: https://doi.org/10.1016/j.jallcom.2016.04.057
Dai H-L., Jiang H-J., Dai T., Xu W-L., Luo A-H., Investigarion on the influence of damage to springback of U-shape HSLA steel plates. Journal of Alloys and Compounds, 2017, Vol. 708, 575-586. https://doi.org/10.1016/j.jallcom.2017.02.270 DOI: https://doi.org/10.1016/j.jallcom.2017.02.270
Górka J., Ozgowicz A., Matusek K., Robotic Spot Welding of DOCOL 1200M Steel. Welding Technology Review, 2019, Vol. 91(4), 33-38. https://doi.org/10.26628/wtr.v91i4.1007 DOI: https://doi.org/10.26628/wtr.v91i4.1007
Tomków J., Janeczek A, Underwater in situ local heat treatment by additional stitches for improving the weldability of steel. Applied Sciences, 2020, Vol. 10(5), 1823. https://doi.org/10.3390/app10051823 DOI: https://doi.org/10.3390/app10051823
Sharma S. K., Maheshwari S., Arc characterization study for submerged arc welding of HSLA (API X80) steel. Journal of Mechanical Science and Technology, 2017, Vol. 31(3), 1383-1390. https://doi.org/10.1007/s12206-017-0238-6 DOI: https://doi.org/10.1007/s12206-017-0238-6
Mert T., Tümer M., Kerimak Z. M., Investigations on mechanical strength and microstructure of multi-pass welded S690QL HSLA steel using MAG and FCAW. Practical Metallography, 2019, Vol. 56(10), 634-654. https://doi.org/10.3139/147.110578 DOI: https://doi.org/10.3139/147.110578
Zhang S., Sun J., Zhu M., Zhang L., Nie P., Li Z., Fiber laser welding of HSLA steel by autogenous laser welding and autogenous laser welding with cold wire methods. Journal of Materials Processing Technology, 2020, Vol 275, 116353. https://doi.org/10.1016/j.jmatprotec.2019.116353 DOI: https://doi.org/10.1016/j.jmatprotec.2019.116353
Å ebestová H., HornÃk P., Mrňa L., Jambor M., HornÃk V., Pokorný P., HutaÅ™ P., Ambrož O., Doležal P., Fatigue properties of laser and hybrid laser-TIG welds of thermos-mechanically rolled steels. Materials Science and Engineering: A, 2020, Vol. 772, 138780. https://doi.org/10.1016/j.msea.2019.138780 DOI: https://doi.org/10.1016/j.msea.2019.138780
Skowrońska B., Chmielewski T., Pachla W., Kulczyk M., Skiba J., Presz W., Friction weldability of UFG 316L stainless steel, Archives of Metallurgy and Materials, 2019, Vol. 64(3), 1051-1058. https://doi.org/10.24425/amm.2019.129494
Kannengiesser T., Boellinghaus T., Cold cracking tests an overview of present technologies and applications. Welding in the World, 2013, Vol. 57, 3-37. https://doi.org/10.1007/s40194-012-0001-7 DOI: https://doi.org/10.1007/s40194-012-0001-7
Pandey C., Saini N., Mahapatra M. M., Kumar P., Hydrogen induced cold cracking of creep resistance ferritic P91 steel for different diffusible hydrogen levels in deposited metal. International Journal of Hydrogen Energy, 2016, Vol. 41(39), 17695-17712. https://doi.org/10.1016/j.ijhydene.2016.07.202 DOI: https://doi.org/10.1016/j.ijhydene.2016.07.202
Wang J., Lu S., Li Y., Hu Q., Rong L., Li D., Cold cracking sensitivity of a newly developed 9Cr2WVTa steel. Journal of Materials Engineering and Performance, 2017, Vol. 26, 258-267. https://doi.org/10.1007/s11665-016-2432-6 DOI: https://doi.org/10.1007/s11665-016-2432-6
Tomków J., Fydrych D., Rogalski G., Łabanowski J., Effect of the welding environment and storage rime of electrodes on the diffusible hydrogen content in deposited metal. Revista de Metalurgia, 2019, Vol. 55(10), E140. https://doi.org/10.3989/revmetalm.140 DOI: https://doi.org/10.3989/revmetalm.140
Tomków J., Fydrych D., Rogalski G., Role of bead sequence in underwater welding. Materials, 2019, Vol. 12(20), 3372. https://doi.org/10.3390/ma12203372 DOI: https://doi.org/10.3390/ma12203372
Kempen K., Vrancken B., Buls S., Thijs L., Humbeeck J.V., Kruth J.P., Selective laser melting of crack-free high density M2 high speed steel parts by baseplate preheating. Journal of Manufacturing Science and Engineering, 2014, Vol. 136(6), 061026. https://doi.org/10.1115/1.4028513 DOI: https://doi.org/10.1115/1.4028513
Hu L. H., Huang J., Li Z. G., Wu Y. X., Effects of preheating temperature on cold cracks, microstructures and properties of high power laser hybrid welded 10Ni3CrMoV steel. Materials&Design, 2011, Vol. 32(4), 1931-1939. https://doi.org/10.1016/j.matdes.2010.12.007 DOI: https://doi.org/10.1016/j.matdes.2010.12.007
Zhang Y., Zhang H., Li J., Liu W., Effect of heat input on microstructure and toughness of coarse grain heat affected zone in Nb microalloyed HSLA steels. Journal of Iron and Steel Research International, 2009, Vol. 16, 73-80. https://doi.org/10.1016/S1006-706X(10)60014-3 DOI: https://doi.org/10.1016/S1006-706X(10)60014-3
Lahtinen T., Vilaça P., Peura P., Mehtonen S., MAG welding tests of modern high strength steels with minimum yield strength of 700 MPa. Applied Science, 2019, Vol. 9(5), 1031. https://doi.org/10.3390/app9051031 DOI: https://doi.org/10.3390/app9051031
Górka J., Kotarska A., MAG welding of 960QL quenched and tempered steel. IOP Conference Series: Materials Science and Engineering, 2019. Vol. 591, 012017. https://doi.org/10.1088/1757-899X/591/1/012017 DOI: https://doi.org/10.1088/1757-899X/591/1/012017
Min D., Hin-hua T., Feng-qui L., Shun Y., Welding of quenched and tempered steeld with high-spin arc narrow gap MAG system. The International Journal of Advanced Manufacturing Technology, 2011, Vol. 55(5-8), 527-533. https://doi.org/10.1007/s00170-010-3052-1 DOI: https://doi.org/10.1007/s00170-010-3052-1
Tomków J., Łabanowski J., Fydrych D., Rogalski G., Cold cracking of S460N steel in water environment. Polish Maritime Research, 2018, Vol. 25, 131-136. https://doi.org/10.2478/pomr-2018-0104 DOI: https://doi.org/10.2478/pomr-2018-0104
Tomków J., Rogalski G., Fydrych D., Łabanowski J., Advantages of the application of the temper bead welding technique during wet welding. Materials, 2019, Vol. 12(6), 915. https://doi.org/10.3390/ma12060915 DOI: https://doi.org/10.3390/ma12060915
Tomków J., Tomków M., The influence of the carbon equivalent on the weldability of high-strength low-alloy steel in the water environment. Welding Technology Review, 2019, Vol. 91(5), 43-49.
https://doi.org/10.26628/wtr.v91i5.1001 DOI: https://doi.org/10.26628/wtr.v91i5.1001