Analysis of direct metal laser sintering ‒ DMLS and heat treatment influence on the Inconel 713C nickel alloy structure

Main Article Content

Jakub Ciftci
Ryszard Sitek
Jarosław Mizera


The group of nickel based superalloys produced in the DMLS (Direct Metal Laser Sintering) process is limited to materials, which produced conventionally do not have properties to allow to use them for rotating components of aircraft engines. This work attempts to optimize the technological parameters of the DMLS process for the Inconel 713C nickel superalloy. A heat treatment was performed for selected samples to investigate the effect on the morphology of the Ni3Al phase. The microstructure analysis and hardness tests were carried out. The material after the DMLS process was characterized by the presence of much smaller dendrites than the cast material and exceeded its hardness. For the tested variants of heat treatment, the material was characterized by smaller sizes of the Ni3Al phase. In order to ensure the stability of the microstructure, an optimization of the dedicated heat treatment after the DMLS process is required, as the standard heat treatment for Inconel 713C cast nickel superalloy does not fully recrystallize the material.


Download data is not yet available.

Article Details

How to Cite
J. Ciftci, R. Sitek, and J. Mizera, “Analysis of direct metal laser sintering ‒ DMLS and heat treatment influence on the Inconel 713C nickel alloy structure”, Weld. Tech. Rev., vol. 93, no. 3, pp. 49-56, Aug. 2021.
Original Articles
Author Biography

Jarosław Mizera, Warsaw University of Technology

Dean of Faculty of Materials Science and Engineering at Warsaw University of Technology, Poland


Masiol M., Harrison R.M., Aircraft engine exhaust emissions and other airport-related contributions to ambient air pollution: A review. Atmospheric Environment, 2014, Vol. 95, 409–55.

Fulara S., Chmielewski M., Gieras M., Variable geometry in miniature gas turbine for improved performance and reduced environmental impact. Energies, 2020, Vol. 13(19).

Nguyen T.H., Tri Nguyen P., Garnier F., Evaluation of the relationship between the aerothermodynamic process and operational parameters in the high-pressure turbine of an aircraft engine. Aerospace Science and Technology, 2019, Vol. 86, 93–105.

Lu Z.L., Cao J.W., Jing H., Liu T., Lu F., Wang D.X., et al., Review of main manufacturing processes of complex hollow turbine blades: This paper critically reviews conventional and advanced technologies used for manufacturing hollow turbine blades.Virtual and Physical Prototyping, 2013, Vol. 8(2), 87–95.

Tian Z., Zhang C., Wang D., Liu W., Fang X., Wellmann D., et al., A review on laser powder bed fusion of inconel 625 nickel-based alloy. Applied Sciences, 2020, Vol. 10(1).

Yang H., Yang J., Huang W., Jing G., Wang Z., Zeng X., Controllable in-situ aging during selective laser melting: Stepwise precipitation of multiple strengthening phases in Inconel 718 alloy. Journal of Materials Science & Technology, 2019, Vol. 35.

Perevoshchikova N., Rigaud J., Sha Y., Heilmaier M., Finnin B., Labelle E., et al., Optimisation of selective laser melting parameters for the Ni-based superalloy IN-738 LC using Doehlert’s design. Rapid Prototyping Journal, 2017, Vol. 23(5), 881–92.

Ojo O.A., Richards N.L., Chaturvedi M.C., Contribution of constitutional liquation of gamma prime precipitate to weld HAZ cracking of cast Inconel 738 superalloy. Scripta Materialia, 2004, Vol. 50(5), 641–6.

Chamanfar A., Jahazi M., Bonakdar A., Morin E., Firoozrai A., Cracking in fusion zone and heat affected zone of electron beam welded Inconel-713LC gas turbine blades. Materials Science and Engineering A, 2015, Vol. 642, 230–40.

Chen Z., Chen S., Wei Z., Zhang L., Wei P., Lu B., et al., Anisotropy of nickel-based superalloy K418 fabricated by selective laser melting. Progress in Natural Science: Materials International, 2018, Vol. 28.

Adamiec J., Łyczkowska K., Przetapianie laserowe i łukiem plazmowym odlewów precyzyjnych ze stopu Inconel 713C. Przegląd Spawalnictwa - Welding Technology Review Internet, 2017, Vol. 89(5).

Long H., Mao S., Liu Y., Zhang Z., Han X., Microstructural and compositional design of Ni-based single crystalline superalloys ― A review. Journal of Alloys and Compounds, 2018, Vol. 743, 203–20.

Łyczkowska K., Adamiec J., Jachym R., Kwieciński K., Properties of the Inconel 713 Alloy Within the High Temperature Brittleness Range. Archives of Foundry Engineering, 2017, Vol. 17.

Ye D., Hsi Fuh J.Y., Zhang Y., Hong G.S., Zhu K., In situ monitoring of selective laser melting using plume and spatter signatures by deep belief networks. ISA Transactions, 2018, Vol. 81(May 2019), 96–104.

Cheng B., Shrestha S., Chou K., Stress and deformation evaluations of scanning strategy effect in selective laser melting. Additive Manufacturing, 2016, Vol. 12.

Xiong Z., Zhang P., Tan C., Dong D., Ma W., Yu K., Selective Laser Melting and Remelting of Pure Tungsten. Advanced Engineering Materials, 2020, Vol. 22(3), 1901352.

Galizoni B.B., Couto A.A., Reis D.A.P., Heat treatments effects on nickel-based superalloy inconel 713C. Metals, 2019, Vol. 9(1).

Lachowicz M., Dudziński W., Haimann K., Podrez-Radziszewska M., Microstructure transformations and cracking in the matrix of γ-γ′ superalloy Inconel 713C melted with electron beam. Materials Science and Engineering A, 2008, Vol. 479.

Safarloo S., Loghman F., Azadi M., Azadi M., Optimal Design Experiment of Ageing Time and Temperature in Inconel-713C Superalloy Based on Hardness Objective. Transactions of the Indian Institute of Metals, 2018, Vol. 71(7).

Jonšta P., Jonšta Z., Sojka J., Čížek L., Hernas A., Structural characteristics of nickel super alloy INCONEL 713LC after heat treatment. Journal of Achievement in Materials and Manufacturing Engineering Internet, 2007, Vol. 21(2), 29–32.

Chu F., Zhang K., Shen H., Liu M., Huang W., Zhang X., et al., Influence of satellite and agglomeration of powder on the processability of AlSi10Mg powder in Laser Powder Bed Fusion. Journal of Materials Research and Technology, 2021, Vol. 11, 2059–73.

Zhang B., Tao C., Lu X., Liu C., Hu C., Bai M., Recrystallization of single crystal nickel-based superalloy. Journal of Iron and Steel Research International, 2009, Vol. 16(6).

Nawrocki J., Gancarczyk K., Manaj W., Albrecht R., Cygan R., Krupa K., The Effect of Superalloy Structure on Ultrasonic Wave Parameters. Fatigue of Aircraft Structures, 2015, Vol. 1.

Körner C., Ramsperger M., Meid C., Bürger D., Wollgramm P., Bartsch M., et al., Microstructure and Mechanical Properties of CMSX-4 Single Crystals Prepared by Additive Manufacturing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, Vol. 49(9), 3781–92.

Aboulkhair N.T., Simonelli M., Parry L., Ashcroft I., Tuck C., Hague R., 3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting. Progress in Materials Science, 2019, Vol. 106.

Liu W.H., Wu Y., He J.Y., Nieh T.G., Lu Z.P., Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy. Scripta Materialia, 2013, Vol. 68(7), 526–9.