Persistence of the thin layers of transition metal carbides in contact with liquid NiBSi alloy
##plugins.themes.bootstrap3.article.main##
Abstrakt
The article presents the results of study on interaction between the liquid NiBSi alloy and solid, thin, micrometer-range layers of transition metal carbides of IVB - VIB groups of the periodic table. The reactive magnetron sputtering method was adopted to deposit of these layers on molybdenum substrates. Carbide layers are destroyed in contact with liquid alloy by dissolving, intensified by the penetration of the liquid along the coating substrate interface. The strong interaction between liquid NiBSi and both the carbide ceramics and the refractory metal substrate was revealed. The effect intensity differs somewhat for both tested carbide groups: VIB (relatively fast) and IVB (less intense).
Pobrania
##plugins.themes.bootstrap3.article.details##
Creative Commons CC BY 4.0 https://creativecommons.org/licenses/by/4.0/
Artykuły czasopisma Welding Technology Review (Przegląd Spawalnictwa) publikowane są w otwartym dostępie na licencji CC BY (licencja Creative Commons Uznanie autorstwa 4.0 Międzynarodowe). Licencja CC BY jest najbardziej otwartą dostępną licencją i uważaną za „złoty standard” w formule otwartego dostępu; jest również preferowany przez wielu fundatorów badań. Licencja ta umożliwia czytelnikom kopiowanie i redystrybucję materiału na dowolnym nośniku i w dowolnym formacie, a także zmienianie, przekształcanie lub budowanie na nim materiału, w tym do użytku komercyjnego, pod warunkiem wskazania oryginalnego autora.
Bibliografia
Eustathopoulos N., Nicholas M.G., Drevet B.; Wettability at High Temperatures, Pergamon Press, 1999.
Lengauer W., Transition Metal Carbides, Nitrides, and Carbonitrides, in: Handbook of Ceramic Hard Materials, Wiley - VCH, 2000.
Senkara J., Windyga A., Podstawy teorii procesów spajania, Wyd. Politechniki Warszawskiej, 1990.
Bober M., Jakubowski J., Radziszewski A., Senkara J., Microstructure and mechanical properties of Ni-WC thermal sprayed composite coatings, Advances in Materials Science, 2018, vol. 18, 24-34. DOI: https://doi.org/10.1515/adms-2017-0047
Bober M., Grześ J., The structure of Ni-TiC composite coatings deposited by PPTAW method, Composites Theory and Practice, 2015, vol. 2, 72-77.
Jakubowski J., Wysocki P., Senkara J., Selektywne regeneracyjne napawanie plazmowe warstw Ni-WC na tytanowe łopatki sprężarki silnika lotniczego, Welding Technology Review, 2011, vol. 83, 38-42. DOI: https://doi.org/10.26628/ps.v83i9.508
Bober M., Senkara J., Badania struktury kompozytowych powłok Ni-WC napawanych plazmowo, Welding Technology Review, 2016, vol. 88, 67-70. DOI: https://doi.org/10.26628/ps.v88i5.614
Bober M., Senkara J., Comparative tests of plasma-surfaced nickel layers with chromium and titanium carbides, Welding International, 2016, vol. 30, 32-37. DOI: https://doi.org/10.1080/09507116.2014.937616
Dul I., Kopeć J. i in., Wpływ wybranych czynników technologicznych na proces lutowania próżniowego stopów Ni i stali wysokostopowej 18-8, Welding Technology Review, 2009, 77-80.
Babul T., Jakubowski J. i in., Lutowanie próżniowe uszczelnień ulowych w aparatach kierujących wykonanych ze stopów Hastelloy i Inconel z zastosowaniem lutu NiCrSiB, Welding Technology Review, 2007, 79, 124-129.
CRC Handbook of Chemistry and Physics, 99th Edition, Taylor&Francis, 2018.
Bober M., Oddziaływania międzyfazowe w technologii napawania plazmowego warstw na osnowie Ni z węglikami metali przejściowych. PhD Thesis, Warsaw University of Technology, Warsaw, 2009.
Senkara J., Sterowanie energią adhezji pomiędzy molibdenem i wolframem a ciekłymi metalami w procesach spajania, Wydawnictwa Politechniki Warszawskiej, 1993.
Oukach S., Pateyron B., Pawłowski L., Physical and chemical phenomena occurring between solid ceramics and liquid metals and alloys at laser and plasma composite coatings formation: A review, Surface Science Reports, 2019, vol. 74, 213-241 DOI: https://doi.org/10.1016/j.surfrep.2019.06.001
Jansson U., Lewin E., Sputter deposition of transition-metal carbide films — a critical review from a chemical perspective. Thin Solid Films, 2013, vol. 536, 1-24. DOI: https://doi.org/10.1016/j.tsf.2013.02.019
Tokunaga T., Nishio K., Ohtani H., Hasebe M., Phase equilibria in the Ni-Si-B system. Materials Transactions, 2003, vol. 44, 1651-1654. DOI: https://doi.org/10.2320/matertrans.44.1651
Peng H., Liu C., Guo H., Yuan Y., Gong S., Xu H., Fabrication of WCp/NiBSi metal matrix composite by electron beam melting, Materials Science and Engineering: A, 2016, vol. 666, 320-323. DOI: https://doi.org/10.1016/j.msea.2016.04.079
Liu C., H Peng H., Y Zhao Y., Y Yuan Y., Guo H.B., Xu H.B., Microstructure, mechanical and corrosion properties of electron-beam-melted and plasma-transferred arc-welded WCP/NiBSi metal matrix composites, Rare Metals, 2019, vol. 38, 814823. DOI: https://doi.org/10.1007/s12598-018-1096-9
Żak A., Sawras K., Dudziński W., Wpływ składu mieszanin NiCrBSiFe+ WSC i NiBSi+ WSC na ich mikrostrukturę i twardość, Welding Technology Review, 2016, vol. 88, 39-41. DOI: https://doi.org/10.26628/ps.v88i9.654
Reeks W., Davies H., Marchisio S., A review: Interlayer joining of nickel base alloys, Journal of Advanced Joining Processes, 2020, vol. 2, 1000302020, https://doi.org/10.1016/j.jajp.2020.100030. DOI: https://doi.org/10.1016/j.jajp.2020.100030
Sundaramoorthy R., Tong S.X., Parekh D., Subramanian C., Effect of matrix chemistry and WC types on the performance of Ni-WC based MMC overlays deposited by plasma transferred arc (PTA) welding, Wear, 2017, vol. 376377, 1720-1727. DOI: https://doi.org/10.1016/j.wear.2017.01.027