Artificial Intelligence Algorithms for the Analysis of Mechanical Property of Friction Stir Welded Joints by using Python Programming
##plugins.themes.bootstrap3.article.main##
Abstrakt
In modern computational science, the interplay existing between machine learning and optimization process marks the most vital developments. Optimization plays an important role in mechanical industries because it leads to reduce in material cost, time consumption and increase in production rate. The recent work focuses on performing the optimization task on Friction Stir Welding process for obtaining the maximum Ultimate Tensile Strength (UTS) of the friction stir welded joints. Two machine learning algorithms i.e. Artificial Neural Network (ANN) and Decision Trees regression model are selected for the purpose. The input variables are Tool Rotational Speed (RPM), Tool Traverse Speed (mm/min) and Axial Force (KN) while the output variable is Ultimate Tensile Strength (MPa). It is observed that in case of the Artificial Neural Networks the Root Mean Square Errors for training and testing sets are 0.842 and 0.808 respectively while in case of Decision Trees regression model, the training and testing sets result Root Mean Square Errors of 11.72 and 14.61. So, it can be concluded that ANN algorithm gives better and accurate result than Decision Tree regression algorithm.
Pobrania
##plugins.themes.bootstrap3.article.details##
Creative Commons CC BY 4.0 https://creativecommons.org/licenses/by/4.0/
Artykuły czasopisma Welding Technology Review (Przegląd Spawalnictwa) publikowane są w otwartym dostępie na licencji CC BY (licencja Creative Commons Uznanie autorstwa 4.0 Międzynarodowe). Licencja CC BY jest najbardziej otwartą dostępną licencją i uważaną za „złoty standard” w formule otwartego dostępu; jest również preferowany przez wielu fundatorów badań. Licencja ta umożliwia czytelnikom kopiowanie i redystrybucję materiału na dowolnym nośniku i w dowolnym formacie, a także zmienianie, przekształcanie lub budowanie na nim materiału, w tym do użytku komercyjnego, pod warunkiem wskazania oryginalnego autora.
Bibliografia
Russell S.J., Norvig P., Artificial Intelligence: A Modern ApproachRussell, S. J., & Norvig, P. (2010). Artificial Intelligence: A Modern Approach. Artificial Intelligence. https://doi.org/10.1017/S0269888900007724 DOI: https://doi.org/10.1017/S0269888900007724
Fogel D.B., Defining Artificial Intelligence.In: Evolutionary Computation, 2006. DOI: https://doi.org/10.1117/12.669679
Ramos C., Augusto J.C., Shapiro D., Ambient intelligencethe next step for artificial intelligence. IEEE Intelligent Systems, 2008, Vol. 23(2), 158. https://doi.org/10.1109/MIS.2008.19 DOI: https://doi.org/10.1109/MIS.2008.19
Ghahramani Z., Probabilistic machine learning and artificial intelligence. Nature, 2015, Vol. 521, 4529. https://doi.org/10.1038/nature14541 DOI: https://doi.org/10.1038/nature14541
Ng A., What artificial intelligence can and cant do right now. Harvard Business Review Digital Articles, 2016,(24).
Chethan K.G., Artificial Intelligence: Definition, Types, Examples, Technologies.https://doi.org/https://medium.com/@chethankumargn/artificial-intelligence-definition-types-examples-technologies-962ea75c7b9b
Meredig B., Five High-Impact Research Areas in Machine Learning for Materials Science. Chem Mater, 2019, Vol. 31(23), 957981. https://doi.org/10.1021/acs.chemmater.9b04078 DOI: https://doi.org/10.1021/acs.chemmater.9b04078
Lu L., Dao M., Kumar P., Ramamurty U., Karniadakis G.E., Suresh S., Extraction of mechanical properties of materials through deep learning from instrumented indentation. Proceedings of the National Academy of Science of the USA, 2020, Vol. 117(13), 705262. https://doi.org/10.1073/pnas.1922210117 DOI: https://doi.org/10.1073/pnas.1922210117
Rupp M., Ramakrishnan R., Von Lilienfeld O.A., Machine Learning for Quantum Mechanical Properties of Atoms in Molecules. Journal of Physical Chemistry Letters, 2015, Vol. 6(16), 330913. https://doi.org/10.1021/acs.jpclett.5b01456 DOI: https://doi.org/10.1021/acs.jpclett.5b01456
Gajawada S.K., The Math behind Artificial Neural Networks.2019. https://doi.org/https://towardsdatascience.com/the-heart-of-artificial-neural-networks-26627e8c03ba
Senthilnathan T., Sujay Aadithya B., Balachandar K., Prediction of mechanical properties and optimization of process parameters in friction-stir-welded dissimilar aluminium alloys. World Journal of Engineering, 2020, Vol. 17(4), 51926. DOI: https://doi.org/10.1108/WJE-01-2020-0019
Mishra A., Tiwari A., Dubey N.K., Machine Learning Approach to Determine Corrosion Potential of Friction Stir Welded Joints. Journal of Image Processing & Pattern Recognition Progress, 2020, Vol. 7(1), 517.
Hartl R., Praehofer B., Zaeh M.F., Prediction of the surface quality of friction stir welds by the analysis of process data using Artificial Neural Networks. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2020, Vol. 234(5), 73251. https://doi.org/10.1177/1464420719899685 DOI: https://doi.org/10.1177/1464420719899685
Abd El-Rehim A.F., Zahran H.Y., Habashy D.M., Al-Masoud H.M., Simulation and prediction of the vickers hardness of AZ91 magnesium alloy using artificial neural network model. Crystals, 2020, Vol. 10(4), 290. https://doi.org/10.3390/cryst10040290 DOI: https://doi.org/10.3390/cryst10040290
Decision Tree Introduction with example. https://doi.org/https://www.geeksforgeeks.org/decision-tree-introduction-example/
Bozkurt Y., Kentli A., Uzun H., Salman S., Experimental Investigation and Prediction of Mechanical Properties of Friction Stir Welded Aluminium Metal Matrix Composite Plates. MATERIALS SCIENCE (MEDŽIAGOTYRA), 2012, Vol. 18(4), 33640. https://doi.org/10.5755/j01.ms.18.4.3092 DOI: https://doi.org/10.5755/j01.ms.18.4.3092
Du Y., Mukherjee T., DebRoy T., Conditions for void formation in friction stir welding from machine learning. npj Comput Mater, 2019, Vol. 5, 68. https://doi.org/10.1038/s41524-019-0207-y DOI: https://doi.org/10.1038/s41524-019-0207-y
Hema P., Experimental Investigations on AA 6061 Alloy Welded Joints by Friction Stir Welding. In: Cooke KO, editor. Aluminium Alloys and Composites, IntechOpen Limited, 2019. https://doi.org/10.5772/intechopen.89797 DOI: https://doi.org/10.5772/intechopen.89797
Elatharasan G., Kumar V.S.S., An experimental analysis and optimization of process parameter on friction stir welding of AA 6061-T6 aluminum alloy using RSM. Procedia Engineering, 2013, Vol. 64, 122734. https://doi.org/10.1016/j.proeng.2013.09.202 DOI: https://doi.org/10.1016/j.proeng.2013.09.202
Netto N., Tiryakioglu M., Eason P., Characterization of Tool Degradation during Friction Stir Processing of 6061-T6 Aluminum Alloy Extrusions. Preprints, 2018, 2018080286. https://doi.org/10.20944/preprints201808.0286.v1 DOI: https://doi.org/10.20944/preprints201808.0286.v1
Amirabadi H., Bani Mostafa Arab N., Safi S.V., A Novel Approach for Improving Mechanical Properties in Friction Stir Butt Welded AA6061 Aluminum Plates by Using Preheat. Preprints, 2020, 2020020183.