Application of Taguchi method in welding technology
Main Article Content
Abstract
Taguchi method is used as a statistical design of experiment technique for optimizing selected welding parameters in terms of improvement of the weld quality. The present study reviews current literature on the Taguchi methodology applied for various welding processes.
Downloads
Article Details
Creative Commons CC BY 4.0 https://creativecommons.org/licenses/by/4.0/
Welding Technology Review (WTR) articles are published open access under a CC BY licence (Creative Commons Attribution 4.0 International licence). The CC BY licence is the most open licence available and considered the industry 'gold standard' for open access; it is also preferred by many funders. This licence allows readers to copy and redistribute the material in any medium or format, and to alter, transform, or build upon the material, including for commercial use, providing the original author is credited.
References
T. Sałaciński, W. Sosnowski: System nadzorowania jakości procesów spawalniczych zgodny z wymaganiami ISO 3834 w oparciu o standardy ISO 9001 część 1, Przegląd Spawalnictwa Vol. 87, No 4, 2015.
T. Sałaciński, W. Sosnowski: System nadzorowania jakości procesów spawalniczych zgodny z wymaganiami ISO 3834 w oparciu o standardy ISO 9001 część 2, Przegląd Spawalnictwa Vol. 87, No 6, 2015.
G, Taguchi, D. Clausing: Robust Quality, Harvard Business Review, Jan.- Feb. 1990.
G. J. Park, T. H. Lee, K. H. Lee: Robust Design: An Overview, American Institute of Aeronautics and Astronautics Journal Vol. 44, No. 1, January 2006
J. Antony: Taguchi or classical design of experiments: a perspective from a practitioner, Sensor Review, Vol 26, No 3, 2006, pp. 227-230.
Z. Zymonik: Koszty jakości w zarzadzaniu przedsiębiorstwem, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, 2003.
Resit Unal, Edwin B. Dean: Taguchi Approach to Design Optimization for Quality and Cost: An Overview, 1991 Annual Conference of the International Society of Parametric Analysts,
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20040121019.pdf.
M. Bober: Badania wpływu głównych parametrów napawania plazmowego na geometrię napoin w oparciu o metody planowania eksperymentu, Przegląd Spawalnictwa Vol 89, No 4, 2017.
Taguchis Quality Engineering Handbook, Appendix C,
http://onlinelibrary.wiley.com/doi/10.1002/9780470258354.app3/pd.
E. M. Anawa, A. G. Olabi: Using Taguchi Method to Optimize Welding Pool of Dissimilar Laser Welded Components, Optics and Laser Technology, 40(2) pp. 379-388, 2008.
A. Khajanchee, P. Jain, S. K. Pradhan: Optimization of CO2 Laser Welding Process Parameters for Automotive Gear using Taguchi Method, International Journal of Engineering Science and Computing, Vol. 6 Issue No. 8, 2016.
P. Sathiya, M. Y. Abdul Jaleel, D. Katherasan: Optimization of welding parameters for laser bead-on-plate welding using Taguchi method, Production Engigeering, Research and. Development, 2010, 4:465-476.
B. Shanmugarajan, Rishabh Shrivastava, P. Sathiya, G. Buvanashekaran, Optimization of laser welding parameters for welding of P92 material using Raguchi based grey relational analysis, Defence Technology 12, 2016, pp. 343-350
L. Dubourg, L. St-Georges: Optimization of Laser Cladding Process Using Taguchi and EM Methods dor MMC Coating Production, Journal of Thermal Spray Technology Vol. 15(4), 2006, pp. 790-795.
M. Ishak, N. F. M. Noordin, L. H. Shah: Parametric studies on tensile strength in joining AA6061-T6 and AA7075-T6 by gas metal arc welding process, Material Science and Engineering 100, 2015, 012042.
P. K. Giridharan, N. Murugan: Optimization of pulsed GTA welding process parameters for the welding of AISI 304L stainless steel sheets, The International Journal of Advanced Manufacturing Technology, 2009, 40: 478-489.
A. Kumar, M. K. Khurana and P. K. Yadav: Optimization of Gas Metal Arc Welding Process Parameters, Material Science and Engineering 149, 2016, 012002.
J. S. Shih, Y. F. Tseng, J. B. Yang, Principal component analysis for multiple quality characteristics optimization of metal inert gas welding aluminum foam plate, Materials and Design 32, 2011, pp. 1253-1261.
N. K. Sahu, A. K. Sahu, A. K. Sahu: Optimization of weld bead geometry of MS plate (Grade: IS 2062) in the context of welding: a comparative analysis of GRA and PCA-Taguchi approaches, Sadhana Vol. 42, No. 2, Febr 2017, pp. 231-244.
P. S. Rao, O. P. Gupta, S. S. N. Murty, A. B. K. Rao: Effect of process parameters and mathematical model for the prediction of bead geometry in pulsed GMA welding, The International Journal of Advanced Manufacturing Technology, 2009, 45: 496-505.
Y. S. Tarng, W. H. Yang: Application of the Taguchi Method to the Optimi- zation of the Submerged Arc Welding Process, Materials and Manufacturing Processes Vol. 13, No. 3, pp. 455-467, 1998.
N. Ene, E. Scutelnicu: Application of the Taguchi Method Combined with Grey Relational Analysis for the Optimization of the Submerged Arc Welding Process, The Annals of Dunarea de Jos University of Galati, Vol.24, 2013.
A. Sarkar, J. Roy, A. Majumder, S. C. Saha: Optimization of Welding Parameters of Submerged Arc Welding Using Analytic Hierarchy Process (AHP) Based on Taguchi Technique, Journal of The Institution of Engineers (India): Series C, April-June 2014, 95(2):159-168.
K. Gowthaman, J. Saiganesh, CS. Rajamanikam: Determination of Submerged Arc Welding Process, Energy E cient Technologies for Sustainability, 2013,
http://ieeexplore.ieee.org/document/6533495/
A. Kumar, S. Maheshwari, S. K. Sharma: Optimization of Vickers Hardness and Impact Strenght of Silica based Fluxes for Submerged Arc Welding by Taguchi Method, 4th International Conference on Materials Processing and Characterization, Materials Today: Proceedings 2, 2015, pp. 1092-1101.
A. K. Lakshminarayanan, V. Balasumramanian: Process parameters optimization dor friction stir welding of RDE-40 aluminum alloy using Taguchi technique, Transactions of Nonferrous Metals Society of China 18, 2008, pp.548-554.
M. Nourani, A. S. Milani, S. Yannacopoulos: Taguchi Optimization of Process Parameters in Friction Stir Welding of 6061 Aluminum Alloy: A Review and Case Study, Engineering, 2011,3, pp. 144-155.
A. G. Chand, J. Bunyan. V.: Application of Taguchi Technique for Friction Stir Welding of Aluminum Alloy AA6061, International Journal of Engineering Research and Technology Vol. 2 Issue 6, 2013.
S. Prasath, S. Vijayan, S. R. K. Rao: Optimization of Friction Stir Welding Process parameters for joining ZM21 to AZ31 of dissimilar Magnesium alloys using Taguchi technique, La Metallurgia Italiana, - No 5, 2016.
S. Kumar, S. Kumar: Multi-response optimization of process parameters for friction stir welding of joining dissimilar Al alloys by grey relation analysis and Taguchi method, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2015, 37:665-674.
J. Kundu, H. Singh: Friction stir welding of AA5083 aluminum alloy: Multi-response optimization using Taguchi-based grey relational analysis, Advances In Mechanical Engineering, 2016, Vol.8(11) pp. 1-10.
M. Youse eh, M. Shamanian, and A. Saatchi: Optimization of Experimental Conditions of the Pulsed Current GTAW Parameters for Mechanical Properties of SDSS UNS S32760 Welds Based on the Taguchi Design Method, Journal of Materials Engineering and Performance, 2012, 21: 1978-1988.
M. Arivarasu, K. Devendranath Ramkumar, N. Arivazhagan: Comparative Studies of High and Low Frequency Pulsing On the Aspect Ratio of Weld Bead in Gas Tungsten Arc Welded AISI 304L Plates, Procedia Engineering 97, 2014, pp. 871-880.
Joby Joseph and S. Muthukumaran: Optimization of pulsed current GTAW process parameters for sintered hot forged AISI 4135 P/M steel welds by simulated annealing and genetic algorithm, Journal of Mechanical Science and Technology, 30 (1), 2016, pp. 145-155.
M. Youse eh, M. Shamanian, A. R. Arghavan: Analysis of Design of Experiments Methodology for Optimisation of Pulsed Current GTAW Process Parameters for Ultimate Tensile Strenght of UNS S32760 Welds, Metallography, Microstructure and Analysis, 2012, 1: 85-91.
D. Zhang, J. Niu: Application Of Arti cial Neural Network Modeling To Plasma Arc Welding Of Aluminum Alloys, Journal of Advanced Metallurgical Sciences, 2000, Vol. 13 No.1, pp. 194-200.