Industrial surfacing and hardfacing technology, fundamentals and applications
Main Article Content
Abstract
The technological fundamentals of modern processes of production surfacing and regeneration of machine parts and equipment as well as methods of assessment of properties and quality of deposits are described. Examples of industrial applications of oxy-acetylen gas, MMA, GMA, SSAW, GTA, PTA, SA and laser surfacing and hardfacing are presented.
Downloads
Article Details
Creative Commons CC BY 4.0 https://creativecommons.org/licenses/by/4.0/
Welding Technology Review (WTR) articles are published open access under a CC BY licence (Creative Commons Attribution 4.0 International licence). The CC BY licence is the most open licence available and considered the industry 'gold standard' for open access; it is also preferred by many funders. This licence allows readers to copy and redistribute the material in any medium or format, and to alter, transform, or build upon the material, including for commercial use, providing the original author is credited.
References
ASTM G 65-00: Standard test method for measuring abrasion using the dray sand/rubber wheel apparatus.
ASTM G 76-95: Standard test method for conducting erosion test by solid particle impingement using gas jets.
ASTM G 99-95a: Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus.
Sposób badania przyczepności warstwy wierzchniej do podłoża, Patent P, 341730, 23.03.2007.
Sposób badania i oceny odporności na zużycie ścierne pod obciążeniem udarowym napawanych warstw wierzchnich, Patent nr 200880, 16.04.2009.
Dobrzański L.A., Podstawy nauki o materiałach i metaloznawstwo, WNT, Warszawa 2002.
Nowacki J. Spiekane metale i kompozyty z osnową metaliczną, WNT, Warszawa 2005.
Klimpel A., Napawanie i natryskiwanie cieplne. Technologie, WNT, Warszawa 2000.
Adamiec P., Dziubiński J., Regeneracja i wytwarzanie warstw wierzchnich elementów maszyn transportowych, Wydawnictwo Politechniki Śląskiej, Gliwice 1999.
Coronado J. J., et al., The effects of welding processes on abrasive wear resistance for hardfacing deposits, Tri-bology International, 2009, Vol. 42(5), 745-749.
Buchely M. F., et al., The effect of microstructure on abrasive wear of hardfacing alloys, Wear, 2005, Vol. 259(16), 52-61.
Cao Y., Zhu S., Liang X., Wang W., Overlapping model of beads and curve fitting of bead section for rapid manu-facturing by robotic MAG welding process, Robotics and computer-integrated manufacturing, 2011, Vol. 27(3), 641-645.
Sorour A.A., Chromik R.R., Brochu M., Tribology of a Fe-Cr-B-Based alloy coating fabricated by a controlled short-circuit MIG welding process, Metallography, Microstructure, and Analysis, 2013, Vol. 2(4), 223-233.
Labisz K., Tański T., Kremzer M., Janicki D., Effect of laser alloying on heat-treated light alloys, International Journal o Materials Research, 2017, Vol. 108(2), 126-132.
Janas D., Cabrero-Vilatela A., Bulmer J., Kurzepa L., Koziol K.K., Carbon nanotube wires for high-temperature performance, Carbon, 2013, Vol. 64, 305-314.
Klimpel A., Technologie laserowe, Wydawnictwo Politechniki Śląskiej, Gliwice 2012.
Klimpel A., Klimpel St. A., et al., Plasma welding repair procedure for turbine jet apparatus rings in aircraft en-gines, Welding International 2014, Vol. 28(6), 495-500.