Analysis of the structure and selected properties of welds obtained by the CMT and MAG method
Main Article Content
Abstract
The article presents an analysis of the Cold Metal Transfer (CMT) method, including the process, advantages and application of the method. The joints made with low energy CMT method and classic MAG method were also compared. The paper presents the results of non-destructive penetrant tests of welded joints made of steel in the S235JR grade. Microscopic observations were made using optical microscopy and the hardness was measured in accordance with PN-EN ISO 6507-1:2007. The test results confirmed that the CMT process allows for the production of high-quality joints and a narrow heat-affected zone compared to the classic MAG welding method, and also provides good mechanical properties and elimination of spatter.
Downloads
Article Details
Creative Commons CC BY 4.0 https://creativecommons.org/licenses/by/4.0/
Welding Technology Review (WTR) articles are published open access under a CC BY licence (Creative Commons Attribution 4.0 International licence). The CC BY licence is the most open licence available and considered the industry 'gold standard' for open access; it is also preferred by many funders. This licence allows readers to copy and redistribute the material in any medium or format, and to alter, transform, or build upon the material, including for commercial use, providing the original author is credited.
References
Kwiecień S., Examination of the structure and properties of welded joints obtained by CMT and MIG/MAG, Eng. diploma, Silesian University of Technology, Gliwice, 2018.
Zhou C., Wang H., Perry A.T., Schroth G.J., On the Analysis of Metal Droplets During Cold Metal Transfer, Pro-cedia Manufacturing, 2017, Vol. 10, 694-707. DOI: 10.1016/j.promfg.2017.07.024 DOI: https://doi.org/10.1016/j.promfg.2017.07.024
Wojdat T., Kustroń P., Skuratowicz F., Michalak P., Piotrowska P., The application of low heat input CMT pro-cess in braze welding copper high-alloy steel joints in various shielding gases, Welding Technology Review, 2018 Vol. 90(1), 15-20. DOI: 10.26628/ps.v90i1.848 DOI: https://doi.org/10.26628/ps.v90i1.848
Zhu Q., He W., Chen L., Zhu J., Hao W., Interfacial toughness evaluation of thermal barrier coatings by bending test, Theoretical and Applied Mechanics Letters, 2017, Vol. 8(1), 3-6. DOI: 10.1016/j.taml.2017.09.007 DOI: https://doi.org/10.1016/j.taml.2017.09.007
Fronius International, Cold Metal Transfer, Austria 2013.
Jaeschke B., Węglowski M., Chmielewski T., Current State and Development Opportunities of Dynamic Power Source for GMA Welding Processes, Journal of Manufacturing Technologies, 2017, Vol. 42(1), 23-30.
Selvi S., Vishvaksenan A., Rajasekar E., Cold Metal Transfer (CMT) Technology - An Overview, Defence Tech-nology, 2018, Vol. 14(1), 28-44. DOI: 10.1016/j.dt.2017.08.002 DOI: https://doi.org/10.1016/j.dt.2017.08.002
Pang J., Hu S., Shen J., Wang P., Liang Y., Arc characteristics and metal transfer behavior of CMT+P welding process, Journal of Materials Processing Technology, 2016, Vol. 238, 212-217. DOI: 10.1016/j.jmatprotec.2016.07.033 DOI: https://doi.org/10.1016/j.jmatprotec.2016.07.033
https://www.fronius.com. Available online: 06.12.2017.
https://www.youtube.com/watch?v=9IuHioLITtQ. Available online: 06.12.2017.
Mirski Z., Pękała P., Spawanie metodą CMT w porównaniu z klasyczną metodą MAG w przemyśle motory-zacyjnym, Welding Technology Review, 2016, Vol. 2, 15-20. DOI: 10.26628/ps.v88i2.567 DOI: https://doi.org/10.26628/ps.v88i2.567
Bolek A., Smorąg H., The use of the low-energy CMT process for surfacing elements of power boilers with materials resistant to corrosion or/and erosion intended for operation at elevated temperatures, Welding Technology Review, 2016, Vol. 88(4), 4-7. DOI: 10.26628/ps.v88i4.586 DOI: https://doi.org/10.26628/ps.v88i4.586
Fronius International, CMT dla TPS/i Robotics welding current power source for robotics, Welding Technology Review, 2017, Vol. 8, 31.
Talalaev R., Veinthal R., Laansoo A., Sarkans M., Cold metal transfer (CMT) welding of thin sheet metal products, Estonian Journal of Engineering, 2012, Vol. 18(3), 243-250. DOI: 10.3176/eng.2012.3.09 DOI: https://doi.org/10.3176/eng.2012.3.09
Grzybicki M., Jakubowski J., Comparative tests of steel car body sheet welds made using CMT and MIG/MAG methods, Welding International, 2013, Vol. 27(8), 610-615. DOI: 10.1080/09507116.2011.606147 DOI: https://doi.org/10.1080/09507116.2011.606147