MAG welding of S700MC steel used in transport means with the operation of low arc welding method

Abilio Silva, Bożena Szczucka-Lasota, Tomasz Węgrzyn, Adam Jurek


Manufacturers of welding equipment strive to develop the most efficient, cost-effective and easy to process welding methods. This necessity is also related to welding of new, often hard-to-weld steel types. The article aims to present the possibility of welding a high-strength S700MC steel with an increased yield point using MAG (135) process and a blowtorch with an intelligent arc control. The blowtorch allows to reduce input energy and reduce splinters while maintaining the mechanical properties of the material. The S700MC steel has been selected for the tests purposefully, as it may create welding problems in order to maintain high strength and increased yield point. The applied technology provided lower power consumption compared to traditional welding machines and joints with very good mechanical properties were achieved.

Słowa kluczowe

civil engineering; transport; mechanical resistance; S700MC welding; low arc energy; martensite; butt joints

Pełny tekst:

PDF (English)


Agrawal K.C. Industrial Power Engineering and Applications Handbook, 1st ed.; Elsevier Inc: 2001.

Szymański G.; Patecki A. Eddy current and temperature of the sheath in tree-phase pipe sheathing system, IEEB

Transaction of magnetics, (2004-2006), Vol. 20(5), 2004-2006.

IEEE Standard for Metal-Enclosed Bus. In IEEE Std C37.23-2015 (Revision of IEEE Std C37.23-2003), IEEE.

Skowrońska B.; Szulc J.; Chmielewski T.; Golański D. Wybrane właściwości złączy spawanych stali S700 MC wykonanych metodą hybrydową plazma + MAG. Welding Technology Review, 2017, Vol. 89(10), 104-111.

Golański D.; Chmielewski T.; Skowrońska B.; Rochalski D. Advanced Applications of Microplasma Welding.

Biuletyn Instytutu Spawalnictwa w Gliwicach, 2018, Vol. 62(5), pp. 53-63.

Jaeschke B.; Węglowski M.; Chmielewski T. Current State and Development Opportunities of Dynamic Power

Source for GMA Welding Processes. Journal of Manufacturing Technologies, 2017, Vol. 42(1), 23-30.

Ferenc K.; Cegielski P.; Chmielewski T. Technika spawalnicza w praktyce: Poradnik inżyniera konstruktora i technologa, 1st ed.; Verlag Dashofer, Warszawa, Poland 2015.

Izairi N.; Ajredini F.; Vevecka-Pfiftaj A.; Makreski P.; Ristova M.M. Microhardness evolution in relation to the cFigtalline microstructure of aluminum alloy AA3004. Archives of Metallurgy Materials, 2018, Vol. 63(3), 1101-1108.

Giles T.L.; Oh-Ishi K.; Zhilyaev A.P.; Swami S.; Mahoney M.W.; McNelley T.R. The Effect of Friction Stir Processing on the Microstructure and Mechanical Properties of an Aluminum Lithium Alloy. Metallurgical and Materials Transactions, 2009, Vol. 40(1), 104-115.

Hamilton C.; Dymek S.; Węglowska A.; Pietras A. Numerical simulations for bobbin tool friction stir welding of aluminum 6082-T. Archives of Metallurgy Materials, 2018, Vol. 63(3), 1115-1123.

Szczucka-Lasota B.; Węgrzyn T.; Stanik Z.; Piwnik J.; Sidun P. Selected parameters of micro-jet cooling gases in hybrid spraying process. Archives of Metallurgy Materials, 2016, Vol. 61(3), 621-624.

Benato R.; Dughiero F.; Forzan M.; Paolucci A. Proximity effect and magnetic field calculation in GIL and in isolated phase bus ducts. IEEE Transactions on Magnetics, 2002, Vol. 38(2), 781-784.

SSAB, Products, Strenx® 700MC Plus,



  • There are currently no refbacks.