Robotic Spot Welding of DOCOL 1200M Steel

Main Article Content

Jacek Górka
Andrzej Ozgowicz
Kamil Matusek

Abstract

The paper presents robotic spot resistance welding technologies for DOCOL 1200M steel with a thickness of 1.8 mm. DOCOL 1200M steel with a martensitic structure is intended mainly for the production of car bumpers, side beams and other elements ensuring the safety of the user of motor vehicles. The test joints were made on a robotic station equipped with a KUKA KR180 robot and a welding from ARO. The obtained welded joints were subjected to macro and microscopic metallographic tests, hardness measurement and strength tests. It has been shown that for properly selected resistance spot welding, DOCOL 1200M steel joints with a satisfactory strength level can be obtained.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
J. Górka, A. Ozgowicz, and K. Matusek, “Robotic Spot Welding of DOCOL 1200M Steel”, Weld. Tech. Rev., vol. 91, no. 4, Jun. 2019.
Section
Original Articles

References

Grajcar A., Różański M., Spawalność wysokowytrzymałych stali wielofazowych AHSS, Welding Technology Review, 2014, Vol. 3, 22-27.

Flaxa V., Shaw J., Material applications in ULSAB-AVC, Steel Grips, 2003, Vol. 1(4), 255-261.

Krajewski S., Nowacki J., Mikrostruktura i właściwości stali o wysokiej wytrzymałości AHSS, Welding Technology Review, 2011, Vol. 7, 45-50.

Stano S., Spawanie laserowe blach o zróżnicowanej grubości przeznaczonych na półfabrykaty karoserii samochodowych typu tailored blanks, Biuletyn Instytutu Spawalnictwa, 2005, Vol. 2, 24-28.

Chen B., Yu H., Hot ductility behaviour of V-N and V-Nb microalloyed steels, International Journal of Minerals, Metallurgy and Materials, 2012, Vol. 19 (6), 525.

Żuk M., Górka J., Czupryński A., Adamiak M., Properties and structure of the weld joints of quench and tempered 4330V steel, Metalurgija, 2016, Vol. 55(4), 613-616.

Shipitsyn S., Babaskin Y., Kirchu I., Smolyakova L., Zolotar N., Microalloyed steel for railroad wheels. Steel in Translation, 2008, Vol. 38(9), 782-785.

Godwin K., Yong O., Microstructure and fatigue performance of butt-welded joints in advanced high-strength steels. Materials Science & Engineering, 2014, A 597, 342-348.

Siewer A., Krastel K., Fiber Laser Seam Stepper Replacing Resistance Spot-Welding. A cost-effective laser based tool to conventional welding technology, Laser Technik Journal, 2014, Vol. 4, 52-55.

Górka J., Ozgowicz A., Próby spawania laserowego niskostopowej wysokowytrzymałej stali o strukturze martenzytycznej, Welding Technology Review, 2016, Vol. 88(5), 24-27.

Senkara J., Współczesne stale karoseryjne dla przemysłu motoryzacyjnego i wytyczne technologiczne ich zgrzewania, Welding Technology Review, 2019, Vol. 81(11), 3-7.

Kaczmarek W., Panasiuk J., Zrobotyzowane procesy zgrzewania, Control Engineering, 2015, Vol. 5, 50-66.

Zhang X.Y., Zhang Y.S., Chen G.L., Research on Weldability for Dual-Phase Steels Using Servo Gun Spot Welding System, Journal Key Engineering, 2007, Material no 1597.

Kowieski S., Mikno Z., Pietras A., Zgrzewanie nowoczesnych stali o wysokiej wytrzymałości, Welding Technology Review, Vol. 56(3), 46-51.

Poradnik inżyniera spawalnictwo, red. Jan Pilarczyk, Wydawnictwo Naukowe PWN, 2017.