Selected properties of single-sided resistance spot welded joints on 18650 battery tab
##plugins.themes.bootstrap3.article.main##
Abstrakt
Pobrania
##plugins.themes.bootstrap3.article.details##

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne – Na tych samych warunkach 4.0 Międzynarodowe.
Creative Commons CC BY 4.0 https://creativecommons.org/licenses/by/4.0/
Artykuły czasopisma Welding Technology Review (Przegląd Spawalnictwa) publikowane są w otwartym dostępie na licencji CC BY (licencja Creative Commons Uznanie autorstwa 4.0 Międzynarodowe). Licencja CC BY jest najbardziej otwartą dostępną licencją i uważaną za „złoty standard” w formule otwartego dostępu; jest również preferowany przez wielu fundatorów badań. Licencja ta umożliwia czytelnikom kopiowanie i redystrybucję materiału na dowolnym nośniku i w dowolnym formacie, a także zmienianie, przekształcanie lub budowanie na nim materiału, w tym do użytku komercyjnego, pod warunkiem wskazania oryginalnego autora.
Bibliografia
Brand M.J.; Schmidt P.A.; Zaeh M.F.; Jossen A. Welding techniques for battery cells and resulting electrical contact resistances, J Energy Storage, 2015, Vol. 1(1), 7–14. https://doi.org/10.1016/j.est.2015.04.001
Alexy A.; Van de Wall D.; Shannon G.; and Boyle M.L. Batteries need strong connections – are resistance, laser and micro TIG welding the best suited joining technologies?, Biuletyn Instytutu Spawalnictwa, 2019, Vol. 2019(1), 53–63. https://doi.org/10.17729/EBIS.2019.1/6
Das A.; Li D.; Williams D.; and Greenwood D. Joining Technologies for Automotive Battery Systems Manufacturing, World Electr. Veh. J., 2018, Vol. 9(2). https://doi.org/10.3390/wevj9020022
Kumar N.; Masters I.; Das A. In-depth evaluation of laser-welded similar and dissimilar material tab-to-busbar electrical interconnects for electric vehicle battery pack, J Manuf Process, 2021, Vol. 70, 78–96. https://doi.org/10.1016/J.JMAPRO.2021.08.025
Li H.; et al., Transient temperature and heat flux measurement in ultrasonic joining of battery tabs using thin-film microsensors, J Manuf Sci Eng, 2013, Vol. 135(5), 78-96. https://doi.org/10.1115/1.4024816/376585
Zhao J.; Li H.; Choi H.; W. Cai, Abell J.A.; and Li X. Insertable thin film thermocouples for in situ transient temperature monitoring in ultrasonic metal welding of battery tabs, J Manuf Process, 2013, Vol. 15(1), 136–140. https://doi.org/10.1016/J.JMAPRO.2012.10.002
Zwicker M.F.R.; Moghadam M.; Zhang W.; and Nielsen C.V. Automotive battery pack manufacturing – a review of battery to tab joining, Journal of Advanced Joining Processes, 2020, Vol. 1, 100017. https://doi.org/10.1016/J.JAJP.2020.100017
Chan Y.H.; Kim J.K.; Liu D.; Liu P.C.K.; Cheung Y.M.; and Ng M.W. Comparative performance of gold wire bonding on rigid and flexible substrates, Journal of Materials Science: Materials in Electronics, 2006, Vol. 17(8), 597–606.
Sedlmair J.; Mehlmann B.; and Olowinsky A. Laserbonding instead of ultrasonic wire bonding - An alternative joining technology for power applications, 2017 International Conference on Electronics Packaging, ICEP 2017, pp. 94–96. https://doi.org/10.23919/ICEP.2017.7939332
Masomtob M.; Sukondhasingha R.; Becker J. and Sauer D.U. Parametric Study of Spot Welding between Li-ion Battery Cells and Sheet Metal Connectors, Engineering Journal, 2017, Vol. 21(7), 457–473. https://doi.org/10.4186/ej.2017.21.7.457
Kumar N.; et al., In-depth evaluation of micro-resistance spot welding for connecting tab to 18,650 Li-ion cells for electric vehicle battery application, International Journal of Advanced Manufacturing Technology, 2022, Vol. 121(9–10), 6581–6597. https://doi.org/10.1007/S00170-022-09775-Z/TABLES/10
Jou M. Real time monitoring weld quality of resistance spot welding for the fabrication of sheet metal assemblies, J Mater Process Technol, 2003, Vol. 132(1–3), 102–113. https://doi.org/10.1016/S0924-0136(02)00409-0
Ariyanto A.; et al., Prototype of Resistance Spot Welding Material Preparation to Improve the Quality of Welding Joints, International Journal of Engineering Business and Social Science, 2023, Vol. 1(4), 283–289. https://doi.org/10.58451/IJEBSS.V1I04.58
Angani A.; Hwang H.M.; Cha H.R.; and Kim Y.G. Spot Welding Characteristics on the Manufacturing Method of Li-Ion Battery Packs for Electric Vehicle, International Conference on Control, Automation and Systems, 2023, 878–881. https://doi.org/10.23919/ICCAS59377.2023.10316836
Mallick S.; and Gayen D. Thermal behaviour and thermal runaway propagation in lithium-ion battery systems – A critical review, J Energy Storage, 2023, Vol. 62, 106894. https://doi.org/10.1016/J.EST.2023.106894
Xu B.; Lee J.; Kwon D.; Kong L.; and Pecht M. Mitigation strategies for Li-ion battery thermal runaway: A review, Renewable and Sustainable Energy Reviews, 2021, Vol. 150, 111437. https://doi.org/10.1016/J.RSER.2021.111437
Das A.; Beaumont R.; Masters I.; and Haney P. Macro-Modelling of Laser Micro-Joints for Understanding Joint Strength in Electric Vehicle Battery Interconnects, Materials, 2021, Vol. 14(13), 3552. https://doi.org/10.3390/MA14133552
SVS Schweisstechnik, “Wirbalit HF specification sheet.” Accessed: Dec. 15, 2023. [Online]. Available: https://www.svs-schweisstechnik.de/files/downloads/wirbalit_hf_data_sheet.pdf