Friction Stir Welding/Processing of High Entropy Alloys (HEAs)

##plugins.themes.bootstrap3.article.main##

AKSHANSH MISHRA

Abstrakt

Design and development of high entropy alloys is very important to overcome the shortcomings of conventionally used alloys in applications where operating conditions of temperature and loading are extreme. In this recent paper, the application of Friction Stir Welding for joining the high entropy alloys and also using Friction Stir Processing for improving the mechanical and microstructure properties of high entropy alloys are discussed.

Pobrania

Brak dostępnych danych do wyświetlenia.

##plugins.themes.bootstrap3.article.details##

Jak cytować
[1]
A. MISHRA, „Friction Stir Welding/Processing of High Entropy Alloys (HEAs)”, Weld. Tech. Rev., t. 93, nr 1, s. 27–33, luty 2021.
Dział
Original Articles

Bibliografia

Zhang Y. History of High-Entropy Materials. In: High-Entropy Materials. Springer, Singapore, 2019. https://doi.org/10.1007/978-981-13-8526-1_1 DOI: https://doi.org/10.1007/978-981-13-8526-1_1

Yeh J.W.; et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mat., 2004, Vol. 6, 299303. https://doi.org/10.1002/adem.200300567 DOI: https://doi.org/10.1002/adem.200300567

Miracle D. B. High entropy alloys as a bold step forward in alloy development. Nature communications, 2019, Vol. 10(1), 1805. https://doi.org/10.1038/s41467-019-09700-1 DOI: https://doi.org/10.1038/s41467-019-09700-1

Ye, Y.F.; Wang, Q.; Lu, J.; Liu, C.T.; Yang, Y. High-entropy alloy: challenges and prospects. Materials Today, 2016, Vol. 19(6), 349-362. https://doi.org/10.1016/j.mattod.2015.11.026 DOI: https://doi.org/10.1016/j.mattod.2015.11.026

Dada M.; Popoola P.; Adeosun S.; Mathe N. High Entropy Alloys for Aerospace Applications, IntechOpen, 2019, https://doi.org/10.5772/intechopen.84982 DOI: https://doi.org/10.5772/intechopen.84982

Cui, L.; Ma, B.; Feng, S.Q.; Wang, X.L. Microstructure and Mechanical Properties of High-Entropy Alloys CoCrFeNiAl by Welding. Advanced Materials Research, 2014, Vol. 936, 16351640. https://doi.org/10.4028/www.scientific.net/AMR.936.1635 DOI: https://doi.org/10.4028/www.scientific.net/AMR.936.1635

Lippold, J.C.; Kiser, S.D.; DuPont, J.N. Welding Metallurgy and Weldability of Nickel-Base Alloys; Wiley: Hoboken, NJ, USA, 2013.

Vendan, S.A.; Gao, L.; Garg, A.; Kavitha, P.; Dhivyasri, G.; SG, R. Interdisciplinary Treatment to ARC Welding Power Sources; Springer: Singapore, 2018. DOI: https://doi.org/10.1007/978-981-13-0806-2

Kong, X.; Yang, Q.; Li, B.; Rothwell, G.; English, R.; Ren, X. Numerical study of strengths of spot-welded joints of steel. Materials & Design, 2008, Vol. 29(8), 15541561. https:/doi.org/10.1016/j.matdes.2007.12.001 DOI: https://doi.org/10.1016/j.matdes.2007.12.001

Chen, S.; Tong, Y.; Liaw, P.K. Additive Manufacturing of High-Entropy Alloys: A Review. Entropy, 2018, Vol. 20(12, 937. https://doi.org/10.3390/e20120937 DOI: https://doi.org/10.3390/e20120937

Baisukhan, A.; Nakkiew, W. Sequential Effects of Deep Rolling and Post-Weld Heat Treatment on Surface In-tegrity of AA7075-T651 Aluminum Alloy Friction Stir Welding. Materials, 2019, Vol. 12(21), 3510. https://doi.org/10.3390/ma12213510 DOI: https://doi.org/10.3390/ma12213510

Park, S.; Nam, H.; Na, Y. et al. Effect of Initial Grain Size on Friction Stir Weldability for Rolled and Cast Co-CrFeMnNi High-Entropy Alloys. Metals and Materials International, 2020, Vol. 26, 641-649. https://doi.org/10.1007/s12540-019-00466-1 DOI: https://doi.org/10.1007/s12540-019-00466-1

Jo, M.; Kim, H.; Kang, M. et al. Microstructure and mechanical properties of friction stir welded and laser welded high entropy alloy CrMnFeCoNi. Metals and Materials International, 2018, Vol. 24, 7383. https://doi.org/10.1007/s12540-017-7248-x DOI: https://doi.org/10.1007/s12540-017-7248-x

Nene, S.S.; Liu, K.; Frank, M. et al. Enhanced strength and ductility in a friction stir processing engineered du-al phase high entropy alloy. Scientific Reports, 2017, Vol. 7, 16167. https://doi.org/10.1038/s41598-017-16509-9 DOI: https://doi.org/10.1038/s41598-017-16509-9

Komarasamy, M.; Kumar, N.; Tang, Z.; Mishra, R.S.; Liaw, P.K. Effect of microstructure on the deformation mechanism of friction stir-processed Al0.1CoCrFeNi high entropy alloy. Materials Research Letters, 2015, Vol. 3(1), 30-34. https://doi.org/10.1080/21663831.2014.958586 DOI: https://doi.org/10.1080/21663831.2014.958586

Zhu, Z.G.; Sun, Y.F.; Goh, M.H.; Ng, F.L.; Nguyen, Q.B.; Fujii, H.; Nai, S.M.L.; Wei, J.; Shek, C.H. Friction stir welding of a CoCrFeNiAl0.3 high entropy alloy. Materials Letters, 2017, Vol. 205, 142-144. https://doi.org/10.1016/j.matlet.2017.06.073 DOI: https://doi.org/10.1016/j.matlet.2017.06.073

Shaysultanov, D.; Stepanov, N.; Malopheyev, S.; Vysotskiy, I.; Sanin, V.; Mironov, S.; Kaibyshev, R.; Salishchev, G.; Zherebtsov, S. Friction stir welding of a Ñarbon-doped CoCrFeNiMn high-entropy alloy. Materials Charac-terization, 2018, Vol. 145, 353-361. https://doi.org/10.1016/j.matchar.2018.08.063 DOI: https://doi.org/10.1016/j.matchar.2018.08.063

Rui Xuan Li; Yong Zhang, Entropic Alloys for Cryogenic Applications, Stainless Steels and Alloys, Zoia Duri-agina, IntechOpen, https://doi.org/10.5772/intechopen.82351 DOI: https://doi.org/10.5772/intechopen.82351

Geanta V.; Voiculescu I. Characterization and Testing of High-Entropy Alloys from AlCrFeCoNi System for Military Applications [Online First], IntechOpen, 2020. https://doi.org/10.5772/intechopen.88622 DOI: https://doi.org/10.5772/intechopen.88622

Sharma A. High-Entropy Alloys for Micro- and Nanojoining Applications [Online First], IntechOpen, 2020. https://doi.org/10.5772/intechopen.91166 DOI: https://doi.org/10.5772/intechopen.91166