Modeling and measurements of temperature field in the arc welding and hybrid plasma-MAG welding heat source models

Main Article Content

Damian Rochalski
Dariusz Golański
Przemysław Połaski

Abstract

The modelling of welding processes has recently become one of the most important tools to support the experimental research and the production implementation of welding processes. The literature is very rich in publications containing elements of single source modelling of welding processes, but the growing industrial interest in the use of hybrid welding sources creates a new field for the study of these processes using numerical simulations. In the present study, an attempt has been made to create a conventional and hybrid heat source in a software dedicated to performing numerical simulations using the FEA method - LUSAS FEA 14.7. As a result of the study, based on studies of the temperature field and thermal cycle of welding, it was possible to verify the classical Goldak model. Furthermore, the study showed that the proposed hybrid heat source model fairly well reflects the temperature distribution changes in hybrid welding.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
D. Rochalski, D. Golański, J. Szulc, and P. Połaski, “Modeling and measurements of temperature field in the arc welding and hybrid plasma-MAG welding heat source models”, Weld. Tech. Rev., vol. 96, pp. 107–116, Jan. 2024.
Section
Original Articles

References

Goldak, J.; Chakravarti, A.; Bibby, M. A new finite element model for welding heat sources. Metall. Trans. B 1984, 15, 299–305, doi:10.1007/BF02667333

Goldsmith, A.; Waterman, T.E.; Hirchorn, H.J. Handbook of thermophysical properties of solid materials; New York, 1961

Komanduri, R.; Hou, Z.B. Thermal analysis of the arc welding process: Part I. General solutions. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 2000, 31, 1353–1370, doi:10.1007/s11663-000-0022-2

Rochalski, D.; Golański, D.; Chmielewski, T. Modele spawalniczych źródeł ciepła w analizie pola temperatury. Przegląd Spaw. - Weld. Technol. Rev. 2017, 89, 109–116, doi:10.26628/ps.v89i5.776

Rochalski, D.; Golański, D.; Chmielewski, T. Modelowanie spawalniczego źródła ciepła w procesie spawania hybrydowego. Przegląd Spaw. - Weld. Technol. Rev. 2017, 89, 98–103, doi:10.26628/ps.v89i10.824

Słania, J.; Mikno, Z. Zagadnienia pomiaru temperatury w procesach spawania. Biul. Inst. Spaw. 2007, 51, 46–49

Pilat, Z.; Szulc, J. Concept of the model robotized cell for Plasma-GMAW hybrid welding. Appl. Mech. Mater. 2014, 613, 43–52, doi:10.4028/www.scientific.net/AMM.613.43

Chmielewski, T.; Szulc, J.; Pilat, Z. Badania metalograficzne spoin wykonanych hybrydową metodą PTA-MAG; Metallographic examination of welded joints produced by PTA-MAG hybrid process. Przegląd Spaw. - Weld. Technol. Rev. 2014, 86, 46–50, doi:10.26628/ps.v86i7.64

Sajek, A. Welding Thermal Cycles of Joints Made of S1100QL Steel by Saw and Hybrid Plasma-Mag Processes. Adv. Mater. Sci. 2020, 20, 75–86, doi:10.2478/adms-2020-0023

Skowrońska, B.; Szulc, J.; Bober, M.; Baranowski, M.; Chmielewski, T. Selected Properties of RAMOR 500 Steel Welded Joints by Hybrid PTA-MAG. J. Adv. Join. Process. 2022, 5, 100111, doi:10.1016/j.jajp.2022.100111

Skowronska, B.; Chmielewski, T.; Golanski, D.; Szulc, J. Weldability of S700MC steel welded with the hybrid plasma + MAG method. Manuf. Rev. 2020, 7, 4, doi:10.1051/mfreview/2020001

Węglowski, M.; Chmielewski, T.; Kudła, K. Productivity assessment of the low-energy SpeedRoot welding process in PG position. Weld. Int. 2016, 30, doi:10.1080/09507116.2014.937621

Most read articles by the same author(s)

<< < 1 2 3 4