Rotary friction welding of Al/Al2O3 Composites with Aluminium Alloys
Main Article Content
Abstract
Friction welding is one of the most economical process for solid-state joining materials.
This technique allows to weld similar and dissimilar materials in a very short time. Friction welding of metal with composites gives new possibilities of application, due to the fact that materials have different physical and mechanical properties. In the study, aluminum alloy 44200 was friction welded to Al/Al2O3 composite. In addition, the following exam were used: optical microscopy, microhardness measurements and also tensile strength for all joints produced by friction welding. All of studies were performed to evaluate the quality of bonding aluminum alloy with metal matrix composite reinforced ceramic phase of Al/Al2O3.
Downloads
Article Details
Creative Commons CC BY 4.0 https://creativecommons.org/licenses/by/4.0/
Welding Technology Review (WTR) articles are published open access under a CC BY licence (Creative Commons Attribution 4.0 International licence). The CC BY licence is the most open licence available and considered the industry 'gold standard' for open access; it is also preferred by many funders. This licence allows readers to copy and redistribute the material in any medium or format, and to alter, transform, or build upon the material, including for commercial use, providing the original author is credited.
References
Szala M., Hejwowski T., Cavitation Erosion Resistance and Wear Mechanism Model of Flame-Sprayed Al2O3-40%TiO2/NiMoAl Cermet Coatings. Coatings, 2018, Vol. 8(7), 254. https://doi.org/10.3390/coatings8070254 DOI: https://doi.org/10.3390/coatings8070254
Basheer U.M., Mohd Noor A.-F., Microstructural Development in Friction Welded Aluminum Alloy with Different Alumina Specimen Geometries. Friction and Wear Research, 2013, Vol. 1(2).
Ambroziak A., Korzeniowski M., Using resistance spot welding for joining aluminium elements in automotive industry. Archives of Civil and Mechanical Engineering, 2010, Vol. 10(1), 513. https://doi.org/10.1016/s1644-9665(12)60126-5 DOI: https://doi.org/10.1016/S1644-9665(12)60126-5
Skowrońska B., Chmielewski T., Pachla W., Kulczyk M., Skiba J., Presz W., Friction weldability of UFG 316L stainless steel. Archives of Metallurgy and Materials, 2019, Vol. 64(3), 10518. https://doi.org/10.24425/amm.2019.129494
Park I.D., Lee C.T., Kim H.S., Choi W.J., Kang M.C., Structural considerations in friction welding of hybrid Al 2O3-reinforced aluminum composites. Transactions of Nonferrous Metals Society of China (English Edition), 2011, Vol. 21(1), 426. https://doi.org/10.1016/S1003-6326(11)61058-3 DOI: https://doi.org/10.1016/S1003-6326(11)61058-3
Ahmad Fauzi M.N., Uday M.B., Zuhailawati H., Ismail A.B., Microstructure and mechanical properties of alumina-6061 aluminum alloy joined by friction welding. Materials and Design, 2010, Vol. 31(2), 6706. https://doi.org/10.1016/j.matdes.2009.08.019 DOI: https://doi.org/10.1016/j.matdes.2009.08.019
Hascalik A., Orhan N., Effect of particle size on the friction welding of Al2O3 reinforced 6160 Al alloy composite and SAE 1020 steel. Materials and Design, 2007, Vol. 28(1), 3137. https://doi.org/10.1016/j.matdes.2005.06.001 DOI: https://doi.org/10.1016/j.matdes.2005.06.001
Naplocha K., Kaczmar J.W., Morgiel J., Local strengthening of en AC-44200 al alloy with ceramic fibers.In: Key Engineering Materials, 2015. p. 23740. https://doi.org/10.4028/www.scientific.net/KEM.662.237 DOI: https://doi.org/10.4028/www.scientific.net/KEM.662.237
Kurzawa A., Kaczmar J.W., Bending Strength of en AC-44200-Al2O3 Composites at Elevated Temperatures. Archives of Foundry Engineering, 2017, Vol. 17(1), 1038. https://doi.org/10.1515/afe-2017-0019 DOI: https://doi.org/10.1515/afe-2017-0019
Krzyńska A., Włosiński W., Kaczorowski M., About the structure Cu-Al2O3 joints obtained by diffusion bonding. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2006, Vol. 220(3), 43945. https://doi.org/10.1243/09544054JEM237 DOI: https://doi.org/10.1243/09544054JEM237
Zhou Y., Zhang J., North T.H., Wang Z., The mechanical properties of friction welded aluminium-based metal-matrix composite materials. Journal of Materials Science, 1997, Vol. 32(14), 38839. https://doi.org/10.1023/A:1018652429477 DOI: https://doi.org/10.1023/A:1018652429477
Chmielewski T., Hudycz M., Krajewski A., Salaciński T., Skowrońska B., Świercz R., Structure investigation of titanium metallization coating deposited onto AlN ceramics substrate by means of friction surfacing process. Coatings, 2019, Vol. 9(12), 845. https://doi.org/10.3390/coatings9120845 DOI: https://doi.org/10.3390/coatings9120845
Li W., Vairis A., Preuss M., Ma T., Linear and rotary friction welding review. International Materials Reviews, 2016, Vol. 61(2), 71100. https://doi.org/10.1080/09506608.2015.1109214 DOI: https://doi.org/10.1080/09506608.2015.1109214