Micro-resistance spot welding of cylindrical battery packets in FEM calculations
Main Article Content
Abstract
Due to the increasing demand for connecting cells in packets to power electric tools, bicycles and electric cars, the issue of the quality of battery cells with busbars joints with the use of external heat electrodes is particularly important. The paper presents the conditions of the joining process and modelling results using the DC source. Modelling was performed using commercially available Sorpas 3D software. It included checking the influence of the busbar shape, clamping force, electrode material, the shape of electrode face, the length of the tungsten inserts in the welding electrodes on the amount of heat and the diameter of the connections. Modelling results revealed in particular increased heat generation and connection diameters for electrodes with a smaller work surface, however, industrial practice shows that the electrode face diameter durability is limited and that the electrodes flatten - the electrode face diameter increases.
Downloads
Article Details
Creative Commons CC BY 4.0 https://creativecommons.org/licenses/by/4.0/
Welding Technology Review (WTR) articles are published open access under a CC BY licence (Creative Commons Attribution 4.0 International licence). The CC BY licence is the most open licence available and considered the industry 'gold standard' for open access; it is also preferred by many funders. This licence allows readers to copy and redistribute the material in any medium or format, and to alter, transform, or build upon the material, including for commercial use, providing the original author is credited.
References
Lee S.S., et al., Joining technologies for automotive lithium-ion battery manufacturing: A review, Proceedings of the ASME 2010 International Manufacturing Science and Engineering Conference, 2010, Vol. 1, 541-549.
JMBS, Our Guide to Batteries; Johnson Matthey Battery Systems: Milton Keynes, UK, 2015.
Kiehne H.A., Battery technology handbook, CRC Press, 2003.
Besenhard J.O. (ed.), Handbook of battery materials, John Wiley & Sons, 2008.
Cao J., Emadi A., A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles, IEEE Transactions on power electronics, 2012, Vol. 27(1), 122-132.
Yan D. et al., Comparing the performances of different energy storage cells for hybrid electric vehicle, EVS28 International Electric Vehicle Symposium and Exhibition, 2015, Goyang, Korea.
Kras B., Gutkowski R., Figura R., Rodzina modułowych baterii litowych w technologii LTO z systemem zarządzania termicznego do pracy w systemach autobusowych szybkiego ładowania, Autobusy: technika, eksploatacja, systemy transportowe, 2016, Vol. 17(12), 1088-1091.
Li H., et al., Transient temperature and heat flux measurement in ultrasonic joining of battery tabs using thin-film microsensors, Journal of Manufacturing Science and Engineering, 2013, Vol. 135(5).
Baranowski M., Kondej A., Zgrzewanie rezystancyjne cienkich elementów oraz mikrozgrzewanie, Przegląd Mechaniczny, 2014, No. 9, 44-48.
Kang B., Cai W., Tan C.-A., Dynamic response of battery tabs under ultrasonic welding, Journal of Manufacturing Science and Engineering, 2013, Vol. 135(5).
Alexy M. van de Wall D., Geoff S., Boyle L. M. et al., Akumulatory wymagają trwałych połączeń czy zgrzewanie rezystancyjne, spawanie metodą TIG i spawanie laserowe to najlepsze technologie łączenia? Biuletyn Instytut Spawalnictwa, 2019, vol. 91(1), 52-59.
Brand M.J. et al., Welding techniques for battery cells and resulting electrical contact resistances, Journal of En-ergy Storage 2015, Vol. 1, 7-14.
Gnyusov S.F., et al. Formation of a joint in resistance spot microwelding, Welding International, 2005, Vol. 19(9), 737-741.
Zhang H., Senkara J., Resistance welding: fundamentals and applications, CRC press, 2011.
Ocena metalograficzna połączenia miedź stal dr inż. Andrzej Winiowski prof. Instytutu Spawalnictwa.