Aluminum alloys welding with micro-jet cooling in busducts

Bożena Szczucka-Lasota, Tomasz Węgrzyn, Michał Krzysztoforski

Abstrakt


Aluminium alloys were used in many structural applications, including the civil engineering field. The innovative technology of welding with micro-jet cooling was tested and the effects were reported. The main information is given on the parameters of aluminum welding with the micro-jet cooling process. Information was also reported on the influence of various micro-jet parameters on the metallographic structure. Subsequently, metallographic and certain physical properties of welding structures (for example, mechanical resistance, electrical conductivity) were tested. Aluminum alloys are lightweight and resistant to corrosion in the natural and aquatic environment, which is why they are a suitable material for responsible structures (in the construc- tion of ships, vehicles, electrical conductors). This article focuses on the mechanical and electrical properties of busduct welds made with the micro-jet cooling pioneering technology.


Słowa kluczowe


welding; micro-jet cooling; metallographic structure; civil engineering, mechanical resistance; conductivity

Pełny tekst:

PDF (English)

Bibliografia


K.C. Agrawal, Industrial Power Engineering and Applications Handbook, Newnes Power Engineering Series, ISBN 978-0-7506-7351-8, Elsevier Inc. (2001), 31.

D. Pytel, B. Szczucka-Lasota, M. Krzysztoforski, T. Węgrzyn, Logistics problems related to international sea transport of large loads on the example of busducts, Proceeedings of X International Scientific Confer- ence, Transport Problems, Wisła, Silesian University of Technology, June (2018).

G. Szymański, A. Patecki, Eddy current and temperature of the sheath in tree-phase pipe sheathing system, IEEB Transaction of magnetics (2004- 2006), vol. MAG-20.

B. Baron, Z. Piatek, Substitute impedance and current density in cylindrical conductors of a single phase high-current busduct, (W), Computer aide design of electroheat devices, Wydawnictwo Politechniki Śląskiej (2002), Gliwice, 252-265.

IEEE Standard for Metal-Enclosed Bus C37.23, IEEE USA, ISBN 978-1- 5044-0650-5 (2015).

K. Lukaszkowicz, L.A. Dobrzański, A. Zarychta, Structure, chemical and phase compositions of coatings deposited by reactive magnetron sput- tering onto the brass substrate, Journal of Materials Processing Technol- ogy (2004), vols. 157-158, 380-387.

B. Skowrońska, J. Szulc, T. Chmielewski, D. Golański, Wybrane właściwości złączy spawanych stali S700 MC wykonanych metodą hybrydową plazma+MAG, Welding Technology Review (2017), vol. 89 (10), 104-111.

D. Golański, T. Chmielewski, B. Skowrońska, D. Rochalski, Advanced Applications of Microplasma Welding, Biuletyn Instytutu Spawalnictwa w Gliwicach (2018), vol. 62 (5), 53-63.

B. Jaeschke, M. Węglowski, T. Chmielewski, Current State and Development Opportunities of Dynamic Power Source for GMA Welding Processes, Journal of Manufacturing Technologies (2017), vol. 42 (1), 23-30.

K. Ferenc, P. Cegielski, T. Chmielewski, Technika spawalnicza w praktyce, Poradnik inżyniera konstruktora i technologa, Verlag Dashofer (2015), Warszawa.

Welding Handbook, Metals and their weldability, American Welding Society (1972), The Sixth Edition, USA.

N. Izairi, F. Ajredini, A. Vevecka-Pfiftaj, P. Makreski, Ristova, Microhardness evolution in relation to the crystalline microstructure of aluminum alloy AA3004, Archives of Metallurgy Materials (2018), vol. 63 (3), 1101- 1108.

T.L. Giles, K. Oh-Ishi, A.P. Zhilyaev, S. Swami, M.W. Mahoney, T.R. Mc-Nelley, The Effect of Friction Stir Processing on the Microstructure and Mechanical Properties of an Aluminum Lithium Alloy, Metallurgical and Materials Transactions (2009), vol. 40 (1), 104-115.

C. Hamilton, S. Dymek, A. Węglowska, A. Pietras, Numerical simulations for bobbin tool friction stir welding of aluminum 6082-T, Archives of Met- allurgy Materials (2018), vol. 63 (3), 1115-1123.

Y. Lin, Z. Zheng, S. Li., X. Kong, Y. Han, Microstructures and properties of 2099 Al-Li alloy, Materials Characterization (2013), vol. 84, 88-99.

T. Węgrzyn, J. Piwnik, A. Silva, M. Plata, D. Hadryś, Micro-jet technology in welding, In Proceedings of the 23rd International Ocean (Offshore) and Polar Engineering Conference, Anchorage, AK, USA, 30 June – 5 July (2013), 178-180.

B. Szczucka-Lasota, T. Węgrzyn, Z. Stanik, J. Piwnik, P. Sidun, Selected parameters of micro-jet cooling gases in hybrid spraying process, Archives of Metallurgy Materials (2016), vol. 61 (3), 621-624.

D. Hadryś, Mechanical properties of plug welds after micro-jet cooling, Archives of Metallurgy Materials (2016), vol. 61 (4), 1771-1775.

D. Hadryś, Impact load of welds after micro-jet cooling, Archives of Metallurgy Materials (2016), vol. 61, 2525-2528.

R. Benato, F. Dughiero, M. Forzan, A. Paolucci, Proximity effect and magnetic field calculation in GIL and in isolated phase bus duct IEE Trans. of Magn. (2002), vol. 38 (2), 781-784.




DOI: http://dx.doi.org/10.26628/wtr.v91i2.1024

Refbacks

  • There are currently no refbacks.