Influence of austenitic interlayer on the properties of stellite padding welds after impact-hardening
Main Article Content
Abstract
Stellites (Co-Cr-W-C) are the specific group of coating materials used for surface modification of the engineering materials and for remanufacturing too. The aim of the paper was to research the influence of austenitic (308LSi) interlayer present on hardening level of stellite 1 and 6 after impact treatment. The samples have been cladded by TIG welding method with interlayer and without. Before impact hardening the samples have been visually and penetrant non-destructive tested. The samples after impact hardening have been tested by metallographic and Vickers hardness methods. The highest impact hardening effect have been revealed for coatings deposited with interlayer. The highest impact hardening effect was achieved for the padding welds produced with the interlayer, i.e. for stellite 1 (increased by 29.8%) and stellite 6 (increased by 42.7%). The hardening of the coating samples deposited without interlayer was lower and amounted to stellite 1 (increased by 13.7%) and stellite 6 (increased by 29.8%) respectively. The highest hardness values were obtained for impact-hardened cladded welds without the use of an interlayer (stellite 1; 790 HV0.1 and stellite 6; 732 HV0.1). The use of an interlayer reduces the hardness of the stellite coating while increasing the susceptibility to hardening and plastic deformation of the produced coating.
Downloads
Article Details
Creative Commons CC BY 4.0 https://creativecommons.org/licenses/by/4.0/
Welding Technology Review (WTR) articles are published open access under a CC BY licence (Creative Commons Attribution 4.0 International licence). The CC BY licence is the most open licence available and considered the industry 'gold standard' for open access; it is also preferred by many funders. This licence allows readers to copy and redistribute the material in any medium or format, and to alter, transform, or build upon the material, including for commercial use, providing the original author is credited.
References
Park C.K., Lee J.H., Kang N.H., Chun E.J., Correlation between Microstructure and Tribological Properties of Laser Surface Heat-Treated Stellite Coatings. Coatings Internet, 2020, Vol. 10(5), 433. DOI: https://doi.org/10.3390/coatings10050433
Simunovic K., Havrlisan S., Saric T., Vukelic D., Modeling and Optimization in Investigating Thermally Sprayed Ni-Based Self-Fluxing Alloy Coatings: A Review. Materials, 2020, Vol. 13(20), 4584. DOI: https://doi.org/10.3390/ma13204584
Singh J., Kumar S., Mohapatra S.K., An erosion and corrosion study on thermally sprayed WC-Co-Cr powder synergized with Mo2C/Y2O3/ZrO2 feedstock powders. Wear, 2019, Vol. 438439. https://doi.org/10.1016/j.wear.2019.01.082 DOI: https://doi.org/10.1016/j.wear.2019.01.082
Kaszuba M., Widomski P., Białucki P., Lange A., Boryczko B., Walczak M., Properties of new-generation hybrid layers combining hardfacing and nitriding dedicated to improvement in forging tools durability. Archives of Civil and Mechanical Engineering, 2020, Vol. 20(3), 78. DOI: https://doi.org/10.1007/s43452-020-00080-8
Wierzchoń T., Burakowski T., Inżynieria powierzchni metali.WNT, 1995. 556 s.
Budzyński P., Kamiński M., Turek M., Wiertel M., Impact of nitrogen and manganese ion implantation on the tribological properties of Stellite 6 alloy. Wear, 2020, Vol. 456457, 203360. DOI: https://doi.org/10.1016/j.wear.2020.203360
Żebrowski R., Walczak M., Effect of the Shot Peening on Surface Properties and Tribological Performance of Ti-6Al-4V Alloy Produced by Means of DMLS Technology. Arch. of Metallurgy and Materials, 2019, Vol. 64(1), 37783.
Macek W., Szala M., Kowalski M., Gargasas J., Rehmus-Forc A., Deptuła A., Shot peening intensity effect on bending fatigue strength of S235, S355 and P460 structural steels. IOP Conference Series: Materials Science and Engineering, 2019, Vol. 710, 012035. DOI: https://doi.org/10.1088/1757-899X/710/1/012035
Łatka L., Biskup P., Development in PTA Surface Modifications A Review. Advances in Materials Science, 2020, Vol. 20(2), 3953. DOI: https://doi.org/10.2478/adms-2020-0009
Mendez P.F., Barnes N., Bell K., Borle S.D., Gajapathi S.S., Guest S.D., i in., Welding processes for wear resistant overlays. Journal of Manufacturing Processes, 2014, Vol. 16(1), 425. DOI: https://doi.org/10.1016/j.jmapro.2013.06.011
Czupryński A., Adamiak M., Bayraktar E., Wyględacz B., Comparison of tribological properties and structure of coatings produced in powder flame spraying process on grey cast iron. Weld. Tech. Rev., 2020, Vol. 92(3), 721. DOI: https://doi.org/10.26628/wtr.v92i3.1102
Klimpel A., Napawanie i natryskiwanie cieplne: technologie.WNT, 2009. 470 s.
Bazychowska S., Smoleńska H., Kończewicz W., The Impact of Material Selection on Durability of Exhaust Valve Faces of a Ship Engine A Case Study. Advances in Science and Technology Research Journal, 2020, Vol. 14(3), 16574. DOI: https://doi.org/10.12913/22998624/124074
Bartkowski D., Matysiak W., Wojtko K., Stellite-6 surface layers reinforced with hard and refractory WC particles produced on steel for metal forming. IOP Conference Series: Materials Science and Engineering, 2018, Vol. 393, 012093. DOI: https://doi.org/10.1088/1757-899X/393/1/012093
Hattori S., Mikami N., Cavitation erosion resistance of stellite alloy weld overlays. Wear Internet, 2009, Vol. 267(11), 195460. DOI: https://doi.org/10.1016/j.wear.2009.05.007
Chmielewski T., Golański D., Napawanie brązu berylowego stellitem metodą MCAW. Welding Technology Review, 2011, Vol. 83(10). https://doi.org/10.26628/wtr.v83i10.464 DOI: https://doi.org/10.26628/ps.v83i10.464
Falqueto L.E., Butkus D.J., De Mello J.D.B., Bozzi A.C., Scandian C., Sliding wear of cobalt-based alloys used in rolling seamless tubes. Wear, 2017, Vol. 376377, 173946. DOI: https://doi.org/10.1016/j.wear.2017.01.009
Szala M., Hejwowski T., Improvement of cavitation erosion resistance of metal alloys by pad welding of coatings. Welding Technology Review, 2015, Vol. 87(9), 5660.
Foster J., Cullen C., Fitzpatrick S., Payne G., Hall L., Marashi J., Remanufacture of hot forging tools and dies using laser metal deposition with powder and a hard-facing alloy Stellite 21®. Journ. of Remanuf., 2019, Vol. 9(3), 189203. DOI: https://doi.org/10.1007/s13243-018-0063-9
G.p. R., M. K., Bakshi S.R., Hardfacing of AISI H13 tool steel with Stellite 21 alloy using cold metal transfer welding process. Surface and Coatings Technology, 2017, Vol. 326, 6371. DOI: https://doi.org/10.1016/j.surfcoat.2017.07.050
Szala M., Walczak M., Cavitation erosion and sliding wear resistance of HVOF coatings. Welding Technology Review, 2018, Vol. 90(10). https://doi.org/10.26628/wtr.v90i10.964 DOI: https://doi.org/10.26628/wtr.v90i10.964
Materiały spawalnicze : MOST EL-Co 6 - drut spawalniczy.Materiały spawalnicze: www.rywal.com.pl.
Materiały spawalnicze : MOST EL-Co 1 - drut spawalniczy.Materiały spawalnicze: www.rywal.com.pl.
K. Ferenc, Spawalnictwo. Warszawa, WNT, 2009. 262 s.
Brodziński A., Laboratorium ogólne - maszyny i urządzenia do obróbki plastycznej. Lublin, Poland, Wydaw. Uczelniane PL, 1993. 156 s.
Kennametal Stellite.Kennametal Stellite https://www.stellite.com/us/en/home.html.
OK Tigrod 308LSi - pręt spawalniczy.www.rywal.com.pl.
Klimpel A., Podręcznik spawalnictwa: Technologie spawania i cięcia.Wydawnictwo Politechniki Śląskiej, 2013. 764 s.
Pilarczyk J., Poradnik inżyniera: spawalnictwo (in Polish)/ Engineering handbook: welding. Poland, Wydawnictwa Naukowo-Techniczne, 2008. 1068 s.
Zhu Z., Ouyang C., Qiao Y., Zhou X., Wear Characteristic of Stellite 6 Alloy Hardfacing Layer by Plasma Arc Surfacing Processes.T. 2017, Scanning. Hindawi, 2017. s. e6097486. https://doi.org/10.1155/2017/6097486 DOI: https://doi.org/10.1155/2017/6097486
Gomes R., Henke S., D´Oliveira A.S., Microstructural control of Co-based PTA coatings. Materials Research , 2012, Vol. 15(5), 796800. DOI: https://doi.org/10.1590/S1516-14392012005000099