Study of design and research of new welding manipulators on the example of an L-type positioner
Main Article Content
Abstract
The development, testing and implementation of a new construction of a multi-axis L-type welding positioner designed to work with an industrial robot, distinguished by a wide range of movements, high load capacity and working space is a difficult task. Due to the special, unique nature of this type of devices, their research is not the subject of dedicated standards and detailed descriptions of literature and, are based primarily on their own manufacturers' procedures. The article traces the creative process in the development and implementation of the "L" positioner as part of the research and development of new types of machines at PPU "ZAP Robotics" in OstroÌw Wielkopolski in cooperation with the Department of Welding Engineering at the Warsaw University of Technology.
Downloads
Article Details
Creative Commons CC BY 4.0 https://creativecommons.org/licenses/by/4.0/
Welding Technology Review (WTR) articles are published open access under a CC BY licence (Creative Commons Attribution 4.0 International licence). The CC BY licence is the most open licence available and considered the industry 'gold standard' for open access; it is also preferred by many funders. This licence allows readers to copy and redistribute the material in any medium or format, and to alter, transform, or build upon the material, including for commercial use, providing the original author is credited.
References
Bolmsjo G. S. A. kinematic description of a positioner and its application in arc welding robots. Automated and Robotic Welding, 11/1987
Cegielski P., Golański D., Kołodziejczak P., Kolasa A., Sarnowski T. Studium rozwiązań konstrukcyjnych nowej generacji zewnętrznych osi robotów przemysłowych. Przegląd Spawalnictwa 11/2017, str. 84-92. http://dx.doi.org/10.26628/ps.v89i11.839
Cegielski P., Golański D., Kołodziejczak P., Kolasa A., Sarnowski T., Silbert B. Analiza ruchowa w układzie robot zewnętrzne osie z wykorzystaniem wirtualnego środowiska do programowania robotów w trybie off-line. Welding Technology Review 10/2018, str. 13-22. http://dx.doi.org/10.26628/ps.v90i10.946
Cegielski P., Kolasa A., Golański D., Kołodziejczak P., Rochalski D., Sarnowski T. Zaawansowane metody projektowania i weryfikacji torów jezdnych i pozycjonerów spawalniczych zewnętrznych osi robotów. Biuletyn Instytutu Spawalnictwa w Gliwicach 5/2018, str. 35-41. DOI: 10.17729/ebis.2018.5/24
Cook R.D. Finite element modelling for stress analysis. John Wiley, 1995
Ghosh U.K., Design of Welded Steel Structures: Principles and Practice, CRC Press 2017
Hicks J., Welded design - theory and practice, Woodhead Publishing Limited, 2000
Honczarenko J. Roboty przemysłowe. Budowa i zastosowanie. WNT Warszawa 2011
Ä°lman M.M., Karagülle H., Yavuz S.: Integrated design and analysis of two axis gimbal welding positioner with 750 kg loading capacity, Conf. proceedings 18. National Machine Theory Symposium, Trabzon, Turkey, 5-7 July 2017
Kaczmarek W., Jużak I. Projekt zrobotyzowanego stanowiska do spawania kolan rur preizolowanych o różnej średnicy. Biuletyn WAT Vol. LXI, Nr 1, 2012, s. 259-277
LUSAS Modeller User Manual v.14.0. FEA Ltd. UK
Malin V. Designers guide to effectiwe welding automation - part I: analysis of welding operations as objects for automation. Welding Journal 11/1985
P. Pashkevich A., B. Dolgui A. Kinematic Control of A Robot-Positioner System for Arc Welding Application. Industrial Robotics: Programming, Simulation and Application, ISBN 3-86611-286-6, pp. 702, ARS/plV, Germany, December 2006, Edited by: Low Kin Huat
Pierożek B., Lassociński J. Spawanie łukowe w osłonach gazowych. WNT, Warszawa 1987
Totala N.B, Bhutada S., Katruwar N., Rai R., Dhumke K.: Design, Manufacturing and Testing of Circular Welding Positioner, International Journal of Engineering Research and Development, Vol. 10, Issue 2, pp.08-15, 2014
Zdanowicz R. Robotyzacja dyskretnych procesów produkcyjnych. Wydawnictwo Politechniki Śląskiej, Gliwice, 2009