Opracowanie metod wprowadzania nanorurek węglowych do jeziorka ciekłego metalu

Main Article Content

Marek Burda
Tomasz Kik
Andrzej Gruszczyk
Krzysztof Kozioł

Abstract

Niezwykłe właściwości nanorurek węglowych stwarzają perspektywy do ich wykorzystania w wielu dziedzinach nauki i techniki. W obszarze inżynierii materiałowej główne badania z udziałem nanorurek węglowych obejmują wytwarzanie materiałów kompozytowych. Kompozyty o osnowie metalowej wzmacniane nanorurkami węglowymi MM-CNT (ang. metal matrix – carbon nanotube composites) mogą być projektowane w celu uzyskania materiału o małej gęstości, wysokiej wytrzymałości, niskim współczynniku rozszerzalności cieplnej oraz wysokiej przewodności cieplnej. Lekkie i wytrzymałe materiały konstrukcyjne stanowią podstawę przyszłych, efektywnych energetycznie, a tym samym ekologicznych i ekonomicznych rozwiązań technologicznych przemysłu lotniczego i samochodowego. W artykule przedstawiono przebieg badań nad opracowaniem metod wprowadzania nanorurek węglowych do jeziorka ciekłego metalu w celu wytworzenia eksperymentalnych materiałów kompozytowych MM-CNT oraz określenia wpływu CNTs na strukturę i właściwości stali. Zaproponowane procedury, wykorzystujące techniki spawalnicze, stanowią nową, obok odlewania i infiltracji porowatego „performu”, metodę wytwarzania MM-CNT w stanie ciekłym. Przeprowadzona analiza struktury i właściwości uzyskanych obszarów przetopień stali austenitycznej potwierdza zasadność dalszych badań z wykorzystaniem nanorurek węglowych oraz innych metali i stopów o niskiej temperaturze topnienia. 

Development of methods of carbon nanotubes input to weld pool 

Unusual properties of carbon nanotubes offer prospects for their use in many fields of science and technology. In the materials engineering major study involving carbon nanotubes includes production of composite materials. Metal matrix composites reinforced with carbon nanotubes MM-CNT (matrix metal – carbon nanotube composites) can be designed in order to obtain a material with low density, high strength, low coefficient of ther mal expansion and high thermal conductivity. Lightweight and high-resistant construction materials are the basis for future energy efficient and thus the ecological and economical technology for aerospace and automotive industry. The paper presents the research on the development of carbon nanotubes input methods to weld pool to form an experimental MM-CNT composite, and determine the impact of CNTs on the structure and properties of steel. The proposed procedures with the use of welding techniques are a new, next to casting and infiltration of a porous „perform”, methods of producing MM-CNT in a liquid state. The analysis of the structure and properties of the weld penetration regions of austenitic stainless steel confirms the further research validity of using carbon nanotubes and other metals and alloys with low melting point. 


Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
M. Burda, T. Kik, A. Gruszczyk, and K. Kozioł, “Opracowanie metod wprowadzania nanorurek węglowych do jeziorka ciekłego metalu”, WeldTechRev, vol. 83, no. 12, Nov. 2011.
Section
Articles

References

Agrawal A.: Carbon Nanotubes: Reinforced Metal Matrix Composites, CRC Press ISBN:1439811490, 2010.

Bakshi S. at al.: Carbon nanotube reinforced metal matrix composites – a review, International Materials Reviews, Vol. 55 No. 1/ 2010, s. 41-64.

Coleman J., at al.: Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites, Carbon, Vol. 44, Iss. 9, pp. 1624-1652, 2006.

Neubauer E., at al.: Potential and challenges of metal-matrix-composites reinforced with carbon nanofibers and carbon nanotubes, Composites Science and Technology, Vol. 70, Iss. 16, 31, s. 2228-2236, 2010.

Barai P., Weng G.: A theory of plasticity for carbon nanotube reinforced composites, International Journal of Plasticity 27, s. 539-559, 2011.

He X., at al.: Buckling analysis of multi-walled carbon nanotubes: a continuum model accounting for van der Waals interaction, Journal of Mechanics and Physics of solids 53, pp. 303-326, 2005.

Tan H., at al.: The effect of van der Waals-based interface cohesive law on carbon nanotube-reinforced composite materials, Composites Science and Technology, Vol. 67, Iss. 14, s. 2941-2946, 2007.

Zeng X., at al.: A new technique for dispersion of carbon nanotube in a metal melt, Materials Science and Engineering: A, Vol. 527, Iss. 20, 25, pp. 5335-5340, 2010.

Bakshi S., Batista R., Agarwal A.: Quantification of carbon nanotube distribution and property correlation in nanocomposites, Composites Part A: Applied Science and Manufacturing, Vol. 40, Iss. 8, s. 1311-1318, 2009.

Deng C., at al.: Processing and properties of carbon nanotubes reinforced aluminum composites, Materials Science and Engineering A 444, s. 138-145, 2007.

Liao J., Tan M.: Mixing of carbon nanotubes (CNTs) and aluminum powder for powder metallurgy use, Powder Technology, Vol. 208, Iss. 1, s. 42-48, 2011.

Wu Y., Kim G.: Carbon nanotube reinforced aluminum composite fabricated by semi-solid powder processing, Journal of Materials Processing Technology, Vol. 211, Iss. 8, s. 1341- 1347, 2011.

Liao J., at al.: Carbon nanotube evolution in aluminum matrix during composite fabrication process, Materials Science Forum, Vol. 690 (2011), s. 294-297, 2011.

Kim Ch., at al.: Strengthening of copper matrix composites by nickel-coated single-walled carbon nanotube reinforcements, Synthetic Metals, Vol. 159, Iss. 5-6, s. 424-429, 2009.

Cho S., at al.: Multiwalled carbon nanotubes as a contributing reinforcement phase for the improvement of thermal conductivity in copper matrix composites, Scripta Materialia, Vol. 63, Iss. 4, s. 375-378, 2010.

Uddin S., at al.: Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites, Composites Science and Technology, Vol. 70, Iss. 16, s. 2253-2257, 2010.

Kondoh K., at al.: Microstructural and mechanical analysis of carbon nanotube reinforced magnesium alloy powder composites, Materials Science and Engineering: A, Vol. 527, Iss. 16-17, s. 4103-4108, 2010,

Feng Y., Yuana H., Zhanga M.: Fabrication and properties of silvermatrix composites reinforced by carbon nanotubes, Materials Characterization, Vol. 55, Iss. 3, s. 211-218, 2005.

Naia S., Weib J., Gupta M.: Improving the performance of lead-free solder reinforced with multi-walled carbon nano- tubes, Materials Science and Engineering: A, Volume 423, Issues 1-2, s. 166-169, 2006.

Kondoh K., at al.: Characteristics of powder metallurgy pure titanium matrix composite reinforced with multi-wall carbon nanotubes, Composites Science and Technology, Vol. 69, Iss. 7-8, pp. 1077-1081, 2009.

Li Q., Rottmaira Ch., Singera R.: CNT reinforced light metal composites produced by melt stirring and by high pressure die casting, Composites Science and Technology, Volume 70, Issue 16, s. 2242-2247, 2010.

Uozumi H., at at.: Fabrication process of carbon nanotube/ light metal matrix composites by squeeze casting, Materials Science and Engineering: A, Vol. 495, Iss. 1-2, s. 282-287, 2008.

Zhou S., at al.: Fabrication and tribological properties of carbon nanotubes reinforced Al composites prepared by pressureless infiltration technique, Composites Part A: Applied Science and Manufacturing, Vol. 38, Iss. 2, s. 301-306, 2007.

Laha T., at al.: Interfacial phenomena in thermally sprayed multiwalled carbon nanotube reinforced aluminum nanocomposite, Acta Mater. 55, s. 1059-1066, 2007.

Liao J., Tan M.: Mixing of carbon nanotubes (CNTs) and aluminum powder for powder metallurgy use, Powder Technology, Vol. 208, Iss. 1, s. 42-48, 2011.

Yu J., at al.: Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution, Carbon, Vol. 45, Iss. 3, s. 618-623, 2007.

Bakshi, S., at al.: Aluminum composite reinforced with multiwalled carbon nanotubes from plasma spraying of spray dried powders, Surf. Coat. Tech. 203, s. 1544-1554, 2009.

Suttiruengwong S., Sricharussin W.: Synthesis of Stainless Steel/CNTs Nanocomposite Powders, Advanced Materials Research, Vol. 93-94, s. 181-184, 2010.

Most read articles by the same author(s)

1 2 > >>