Determination of moisture resistance of covered electrodes according to PN-EN ISO 14372

Main Article Content

Katarzyna Mielnicka
Adrian Wolski
Aleksandra Świerczyńska
Grzegorz Rogalski
Dariusz Fydrych

Abstract




Moisture present in the electrode covering is one of the sources of diffusible hydrogen in welded joints. In order to study the diffusible hydrogen content in deposited metal, a stand for moisturizing covered electrodes, in accordance with the PN-EN ISO 14372 standard, was built. After the stand was completed, a test of moisturizing the electrodes was carried out and measurements of the diffusible hydrogen content in deposited metal using the mercury method (according to PN-EN ISO 3690) were conducted. The research was aimed at verifying the correctness of the operation of test stand and indirect determination of the influence of storage of rutile-cellulose and cellulose electrodes under fixed conditions on the degree of moisturizing of the weld metal. Both tested electrode grades belong to the group of electrodes with a standard covering.


Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
K. Mielnicka, A. Wolski, A. Świerczyńska, G. Rogalski, and D. Fydrych, “Determination of moisture resistance of covered electrodes according to PN-EN ISO 14372”, WeldTechRev, vol. 91, no. 7, pp. 23-30, Oct. 2019.
Section
Articles

References

Reisgen U., Willms K., Wieland S., Influence of storage conditions on aluminum 4043A welding wires, Welding Journal, 2017, Vol. 96(6).

Świerczyńska A., Effect of technological factors on diffusing hydrogen content in the weld deposit of rutile flux-cored wires, Institute of Welding Bulletin, 2013, Vol. 57(5).

Harwig D.D., Longenecker D.P., Cruz J.H., Effects of welding parameters and electrode atmospheric exposure on the diffusible hydrogen content of gas flux cored arc welds, Welding Journal, 1999, Vol. 78(9).

Fydrych D., Tomków J., Świerczyńska A., Determination of diffusible hydrogen content in the deposited metal of rutile electrodes by the glycerin method, Metallurgy and Foundry Engineering,2013, Vol. 39(1). DOI:10.7494/mafe.2013.39.1.43

Fydrych D., Świerczyńska A., Landowski M., Preliminary studies of seamless flux cored wires stored in extreme conditions, Metallurgy and Foundry Engineering, 2016, Vol. 40(4). https://doi.org/10.7494/mafe.2014.40.4.211

Fydrych D., Świerczyńska A., Tomków J., Diffusible hydrogen control in flux cored arc welding process, Key Engineering Materials, 2014, 597. https://doi.org/10.4028/www.scientific.net/KEM.597.171

Tomków J., Fydrych D., Rogalski G., Łabanowski J., Effect of the welding environment and storage time of electrodes on the diffusible hydrogen content in deposited metal, Revista de Metalurgia, 2019, 55, e140. DOI:10.3989/revmetalm.140

Fydrych D., Łabanowski J., Determining diffusible hydrogen amounts using the mercury method, Welding International, 2012, Vol. 26(9). https://doi.org/10.1080/09507116.2011.592682

Kiefer J.H., Effects of moisture contamination and welding parameters on diffusible hydrogen, Welding Journal, 1996, Vol. 75(5).

Fydrych D., Łabanowski J., An experimental study of high-hydrogen welding processes, Revista de Metalurgia, 2015, Vol. 51(4). DOI: 10.3989/revmetalm.055

Maria G.G.B., Claeys L., Depover T., Santos D.B., Verbeken K., The hydrogen induced mechanical degradation of duplex stainless steel, Steel Research International, 2019, Vol. 90(1). DOI: 10.1002/srin.201800451

Łomozik M., Materials science and weldability, Publisher – Welding Institute, Gliwice 1997.

Łędzki A., Michaliszyn A., Klimczyk A., Iron extraction metallurgy, AGH University of Science and Technology.

Padhy G.K., Ramasubbu V., Albert S.K., Murugesan N., Ramesh C., Hot extraction of diffusible hydrogen and its
measurement using a hydrogen sensor, Welding in the World, 2012, Vol. 56(7). https://doi.org/10.1007/BF03321361

Ramirez J.E., Johnson M., Effect of welding parameters and electrode condition on alloying enrichment of weld
metal deposited with coated cellulosic electrodes, Welding Journal, 2010, Vol. 89(11).

Pakos R., Właściwości złączy spawanych wykonanych elektrodami zasadowymi i celulozowymi, Welding Technology Review, 2011, Vol. 38(5). http://dx.doi.org/10.26628/wtr.v83i5.787

Wciseł J., Construction of a station for moisturizing coated electrodes in accordance with the standard PN EN ISO 14372:2005, Eng. thesis promoter. Prof. G. Rogalski, Gdańsk University of Technology 2018.

Wolski A., Absorbance studies of coated electrodes, Eng. thesis promoter. Prof. G. Rogalski, Gdańsk University of Technology 2018.

Catalog of Lincoln Electric.