Detection of quenching cracks in 100Cr6 bearing steel by the eddy current method

Main Article Content

Adam Kondej
Sylwester Jończyk
Piotr Lasota

Abstract


The article describes the research results in the identification and location of hardening cracks in 100Cr6 bearing steel using a proprietary control and measurement device for non-destructive testing using the eddy current method, Wirotest M2, and the automatic AutoWir-S1 station. A contact head with a frequency of 861 kHz was used for testing. The system recorded changes in voltage amplitude and resonance frequency. A clear decrease in the values of both parameters indicated the presence of discontinuities. The edge effect caused an increase in the voltage amplitude and a decrease in frequency, but these changes did not affect the detection of cracks. The smallest crack detected had a maximum width of approximately 20 µm and was invisible to the naked eye. The obtained surface charts clearly illustrate the course and location of individual discontinuities.


 

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
A. Kondej, S. Jończyk, and P. Lasota, “Detection of quenching cracks in 100Cr6 bearing steel by the eddy current method”, Weld. Tech. Rev., vol. 95, pp. 87–93, Nov. 2023.
Section
Original Articles

References

Simencio Otero R.L.; Otero W.R.; Totten G.E.; Canale L.C.F., Quench Factor Characterization of Steel Hardening: A Review, International Journal of Mechanical Engineering and Automation. 2014, Vol. 1(3), 119-128.

Šolić S.; Podgornik B.; Leskovšek V., The occurrence of quenching cracks in high-carbon tool steel depending on the austenitizing temperature, Engineering Failure Analysis, 2018, Vol. 92, 140-148.

Lewińska-Romicka A., Badania materiałów metodą prądów wirowych. Biuro Gamma. Warszawa 2007.

Dybiec Cz.; Włodarczyk S., Badania nieniszczące metodą prądów wirowych – możliwości zastosowań. Ochrona przed korozją, 2010, 3, 67-74.

Babul T.; Jończyk S.; Samborski T.; Włodarczyk S., Wykrywanie niejednorodności materiału i lokalnych zmian mikrostruktury metodą prądów wirowych, Przegląd Spawalnictwa-Welding Technology Review, 2013, Vol. 85(12), 25-28. https://doi.org/10.26628/wtr.v85i12.140

Babul T.; Jończyk S.; Samborski T., Ocena lokalnych wad mikrostruktury – korelacja wyników pomiarów wiroprądowych i oznaczeń mikrotwardości, Welding Technology Review, 2014,(3)nr 3, 11-17.

Aldrin J.C.; Knopp J.S., Crack Characterization Method with Invariance to Noise Features for Eddy Current Inspection of Fasterner Sites, Journal of Nondestructive Evaluation, 2006, Vol. 25(4), 165-181.

Yamada H.; Hasegawa T.; Ishihara Y.; Kiwa T.; Tsukada K., Difference in the Detection Limits of Flaws in the Depths of Multi-Layered and Continuous Aluminum Plates Using Low-Frequency Eddy Current Testing, NDT & E International, 2008, Vol. 41(2), 108-111.

Helifa B.; Oulhadj A.; Benbelghit A.; Lefkaier I.K.; Boubenider F.; Boutassouna D., Detection and Measurement of Surface Cracks in Ferromagnetic Materials Using Eddy Current Testing, NDT&E International, 2006, Vol. 39, 384-390.

Hur D.; Choi M.; Lee D.; Kim S.; Han J., A Case Study on Detection and Sizing of Defects in Steam Generator Tubes Using Eddy Current Testing, Nuclear Engineering and Design, 2010, Vol. 240, 204-208.

Kondej A.; Szczepański A., The amplitude-frequency measurement in non-destructive testing using the eddy current method, Welding Technology Review, 2018, Vol. 90(11), 12-15. https://doi.org/10.26628/wtr.v90i11.973

Kondej A., Baranowski M., Niedźwiedzki K., Jończyk. S., Szczepański A.: Automatyczne stanowisko do badań nieniszczących metodą prądów wirowych. Inżynieria Powierzchni, 2014 nr 1, s.