Determination of moisture resistance of covered electrodes according to PN-EN ISO 14372
Main Article Content
Abstract
Moisture present in the electrode covering is one of the sources of diffusible hydrogen in welded joints. In order to study the diffusible hydrogen content in deposited metal, a stand for moisturizing covered electrodes, in accordance with the PN-EN ISO 14372 standard, was built. After the stand was completed, a test of moisturizing the electrodes was carried out and measurements of the diffusible hydrogen content in deposited metal using the mercury method (according to PN-EN ISO 3690) were conducted. The research was aimed at verifying the correctness of the operation of test stand and indirect determination of the influence of storage of rutile-cellulose and cellulose electrodes under fixed conditions on the degree of moisturizing of the weld metal. Both tested electrode grades belong to the group of electrodes with a standard covering.
Downloads
Article Details
Creative Commons CC BY 4.0 https://creativecommons.org/licenses/by/4.0/
Welding Technology Review (WTR) articles are published open access under a CC BY licence (Creative Commons Attribution 4.0 International licence). The CC BY licence is the most open licence available and considered the industry 'gold standard' for open access; it is also preferred by many funders. This licence allows readers to copy and redistribute the material in any medium or format, and to alter, transform, or build upon the material, including for commercial use, providing the original author is credited.
References
Reisgen U., Willms K., Wieland S., Influence of storage conditions on aluminum 4043A welding wires, Welding Journal, 2017, Vol. 96(6).
Świerczyńska A., Effect of technological factors on diffusing hydrogen content in the weld deposit of rutile flux- cored wires, Institute of Welding Bulletin, 2013, Vol. 57(5).
Harwig D.D., Longenecker D.P., Cruz J.H., Effects of welding parameters and electrode atmospheric exposure on the diffusible hydrogen content of gas flux cored arc welds, Welding Journal, 1999, Vol. 78(9).
Schaupp T., Rhode M., Kannengiesser T., Influence of welding parameters on diffusible hydrogen content in high-strength steel welds using modified spray arc process, Welding in the World, 2018, Vol. 62(1).
Chandan P., Mahapatra M.M., Kumar P., Saini N., Some studies on P91 steel and their weldments, Journal of Alloys and Compounds, 2018, Vol. 743.
Fydrych D., Tomków J., Świerczyńska A., Determination of diffusible hydrogen content in the deposited metal of rutile electrodes by the glycerin method, Metallurgy and Foundry Engineering,2013, Vol. 39(1).
Fydrych D., Świerczyńska A., Landowski M., Preliminary studies of seamless flux cored wires stored in extreme conditions, Metallurgy and Foundry Engineering, 2016, Vol. 40(4).
Gürel C., Ä°pekoÄŸlu G., Recent developments in joining of aluminum alloys, The International Journal of Advanced Manufacturing Technology, 2017, Vol. 91(5-8)
Fydrych D., Świerczyńska A., Tomków J., Diffusible hydrogen control in flux cored arc welding process, Key Engineering Materials, 2014, 597.
Tomków J., Fydrych D., Rogalski G., Łabanowski J., Effect of the welding environment and storage time of electrodes on the diffusible hydrogen content in deposited metal, Revista de Metalurgia, 2019, 55, e140.
Fydrych D., Łabanowski J., Determining diffusible hydrogen amounts using the mercury method, Welding International, 2012, Vol. 26(9).
Kiefer J.H., Effects of moisture contamination and welding parameters on diffusible hydrogen, Welding Journal, 1996, Vol. 75(5).
Fydrych D., Łabanowski J., An experimental study of high-hydrogen welding processes, Revista de Metalurgia, 2015, Vol. 51(4).
Bracarense A.Q., Souza R, Costa M.C.M., Faria P.E., Liu S., Welding current effect on diffusible hydrogen content in flux cored arc weld metal, Journal of the Brazilian Society of Mechanical Sciences 2002, Vol. 24(4).
Maria G.G.B., Claeys L., Depover T., Santos D.B., Verbeken K., The hydrogen induced mechanical degradation of duplex stainless steel, Steel Research International, 2019, Vol. 90(1).
Claeys L., Depover T, De Graeve I., Verbeken K., Electrochemical hydrogen charging of duplex stainless steel, Corrosion, 2018, Vol. 75(8).
Liu Q., Zhou Q., Venezuela J., Zhang M., Atrens A., Evaluation of the influence of hydrogen on some commercial DP, Q&P and TWIP advanced high-strength steels during automobile service, Engineering Failure Analysis, 2018, Vol. 94.
Ohaeri E., Eduok U., Szpunar J., Hydrogen related degradation in pipeline steel: A review, International Journal of Hydrogen Energy, 2018, Vol. 43(31).
Padhy G.K., Ramasubbu V., Albert S.K., Murugesan N., Ramesh C., Hot extraction of diffusible hydrogen and its measurement using a hydrogen sensor, Welding in the World, 2012, Vol. 56(7).
Łomozik M., Metaloznawstwo i spawalność metali, Materiały szkoleniowe Instytutu Spawalnictwa w Gliwicach, Gliwice 1997.
Kotecki D.J., Hydrogen reconsidered, Welding Journal, 1992, Vol. 71(8).
Ramirez J.E., Johnson M., Effect of welding parameters and electrode condition on alloying enrichment of weld
metal deposited with coated cellulosic electrodes, Welding Journal, 2010, Vol. 89(11).
Pakos R., Właściwości złączy spawanych wykonanych elektrodami zasadowymi i celulozowymi, Welding Technology Review, 2011, Vol. 38(5). [CrossRef]
Felber S., Mechanical-technological and fracture mechanical properties of the high grade pipeline-steel X80 with results of different pipeline-projects, Welding in the World, 2008, Vol. 52(5-6). [CrossRef]
Felber S., Welding of the high grade pipeline-steel X80 and description of different pipeline-projects, Welding in the World, 2008, Vol. 52(5-6).
Łędzki A., Michaliszyn A., Klimczyk A., Metalurgia ekstrakcyjna żelaza /do użytku wewnętrznego AGH/
Wciseł J., Budowa stanowiska do nawilżania elektrod otulonych zgodnie z normą PN EN ISO 14372:2005, Projekt
inżynierski wykonany pod opieką dr. hab. inż. G. Rogalskiego, Politechnika Gdańska 2018.
Wolski A., Badania nasiąkliwości elektrod otulonych, Projekt inżynierski wykonany pod opieką dr. hab. inż. G. Rogalskiego, Politechnika Gdańska 2018.
Welding consumables. Catalog. Lincoln Electric, 2017.