Verification of the welding heat source models in arc welding and hybrid plasma- MAG welding processes based on temperature field tests
##plugins.themes.bootstrap3.article.main##
Abstrakt
Hybrid welding processes belong to a new group of welding varieties that most often combine two classic welding methods, such as laser welding with MIG/MAG welding or plasma welding with MAG welding. Modeling of welding stresses in this type of welding requires the definition of a new type of heat source model that combines a concentrated stream of energy with a classic heat source, which occurs in an electric arc. The paper presents the results of temperature field modeling in conventional MAG welding and hybrid plasma-MAG welding. In the first case, the heat source model described by Goldak was used, and in the second case, the Goldak model was combined with the developed rectangular heat source model with a homogeneous distribution. The temperature distributions obtained from the simulations were verified by spot temperature measurements during welding with thermocouples. A fairly good agreement of the numerical analysis results with the temperature measurements for MAG welding was obtained, while in the case of hybrid welding the discrepancies between the modeling and temperature measurements were greater. The results were discussed, indicating potential causes and factors influencing the obtained test results.
Pobrania
##plugins.themes.bootstrap3.article.details##
Creative Commons CC BY 4.0 https://creativecommons.org/licenses/by/4.0/
Artykuły czasopisma Welding Technology Review (Przegląd Spawalnictwa) publikowane są w otwartym dostępie na licencji CC BY (licencja Creative Commons Uznanie autorstwa 4.0 Międzynarodowe). Licencja CC BY jest najbardziej otwartą dostępną licencją i uważaną za „złoty standard” w formule otwartego dostępu; jest również preferowany przez wielu fundatorów badań. Licencja ta umożliwia czytelnikom kopiowanie i redystrybucję materiału na dowolnym nośniku i w dowolnym formacie, a także zmienianie, przekształcanie lub budowanie na nim materiału, w tym do użytku komercyjnego, pod warunkiem wskazania oryginalnego autora.
Bibliografia
Komanduri R., Hou Z.B., Thermal Analysis of the Arc Welding Process, Part I. General Solutions. Metallurgical and Materials Transactions B, 2000, Vol. 31B, 1353-1370. https://doi.org/10.1007/s11663-000-0022-2 DOI: https://doi.org/10.1007/s11663-000-0022-2
Pavelic V., Tanbakuchi R., Uyehara O.A., Myers P.S., Welding Res. Suppl., 1969, July, 295-304.
Eagar T.W., Tsai N.-S., Temperature Fields Produced by Traveling Distributed Heat Sources. Welding Journal, 1983, Vol. 62(12), 346-355.
Goldak J., Chakravarti A., Bibby M., A new finite element model for welding heat sources. Metallurgical Transactions B, 1984, Vol. 15(2), 299305. DOI: https://doi.org/10.1007/BF02667333
Kik T., Gorka J., Numerical simulations of S700MC laser and hybrid welding, Laser Technology 2018, Progress and Applications of Lasers. Proceedings of SPIE, 10974, UNSP 109740K. https://doi.org/10.1117/12.2515420 DOI: https://doi.org/10.1117/12.2515420
Katayama S., Naito Y., Uchiumi S., Mizutani M., Laser-Arc Hybrid Welding. Solid State Phenomena, 2007, Vol. 127, 295-300. DOI: https://doi.org/10.4028/www.scientific.net/SSP.127.295
Szulc J., Chmielewski T., Pilat Z., Zrobotyzowane spawanie hybrydowe Plazma+MAG stali S700 MC. Welding Technology Review, 2016, Vol. 88(1), 40-45. https://doi.org/10.26628/ps.v88i1.561 DOI: https://doi.org/10.26628/ps.v88i1.561
Kik T., Górka J., Numerical simulations of laser and hybrid S700MC T-joint welding. Materials, Vol. 12(3), 516. https://doi.org/10.3390/ma12030516 DOI: https://doi.org/10.3390/ma12030516
Sun J., Liu X., Tong Y., Deng D., A comparative study on welding temperature fields, residual stress distribu-tions and deformations induced by laser beam welding and CO2 gas arc welding. Materials and Design, 2014, Vol. 63, 519530. https://doi.org/10.1016/j.matdes.2014.06.057 DOI: https://doi.org/10.1016/j.matdes.2014.06.057
Moravec J., Kik T., Novakova I., Application of numerical simulations on X10CrWMoVNb9-2 steel multilayer welding. MM Science Journal, Vol. 2016(5), 1190-1193. https://doi.org/10.17973/MMSJ.2016_11_201628 DOI: https://doi.org/10.17973/MMSJ.2016_11_201628
Yi H-J, Kim J-Y, Yoon Y-H, Kang S-S, Investigations on welding residual stress and distortion in a cylinder as-sembly by means of a 3D finite element method and experiments. Journal of Mechanical Science and Technology, 2011, Vol. 25(12), 3185-3193. https://doi.org/10.1007/s12206-011-1003-x DOI: https://doi.org/10.1007/s12206-011-1003-x
Kik T., Moravec J., Novakova I., Numerical simulations of X22CrMoV12-1 steel multilayer welding. Archives of Metallurgy and Materials, 2019, Vol. 64(4), 1441-1448. https://doi.org/10.24425/amm.2019.130111
Goldsmith A., Waterman T.E., Hirchorn H.J., Handbook of thermophysical properties of solid materials. New York, 1961.
Słania J., Mikno Z., Wójcik M., Zagadnienia pomiaru temperatury w procesach spawania. Biuletyn Instytutu Spawalnictwa, 2007, Vol. 51(2), 46-49.
Szulc J., Chmielewski T., Węglowski M., Selected technology abilities of Plasma-MAG hybrid welding process. Welding Technology Review, 2016, vol. 88(5). https://doi.org/10.26628/ps.v88i5.619 DOI: https://doi.org/10.26628/ps.v88i5.619
Skowrońska B., Szulc J., Chmielewski T., and Golański D., Selected properties of plasma+MAG welded joints of S700 MC steel. Welding Technology Review, 2017, Vol. 89(10), 104-111. https://doi.org/10.26628/ps.v89i10.825 DOI: https://doi.org/10.26628/ps.v89i10.825
Rochalski D., Golański D., and Chmielewski T., Modeling of welding heat source in the hybrid welding process. Welding Technology Review, 2017, Vol. 89(10),98-103. https://doi.org/10.26628/ps.v89i10.824 DOI: https://doi.org/10.26628/ps.v89i10.824
Skowrońska B., Chmielewski T., Golański D., Szulc J., Weldability of S700MC steel welded with the hybrid plasma+MAG method. Manufacturing Rev., 2020, Vol. 7, 4, 15. https://doi.org/10.1051/mfreview/2020001 DOI: https://doi.org/10.1051/mfreview/2020001
Guo, Y., Pan, H., Ren, L. et al. An investigation on plasma-MIG hybrid welding of 5083 aluminum alloy. Int J Adv Manuf Technol, 2018, Vol. 98, 14331440. https://doi.org/10.1007/s00170-018-2206-4 DOI: https://doi.org/10.1007/s00170-018-2206-4
Asai S., Ogawa T., Ishizaki Y. et al. Application of Plasma MIG Hybrid Welding to Dissimilar Joints Between Copper and Steel. Weld World, 2012, Vol. 56, 3742. https://doi.org/10.1007/BF03321143 DOI: https://doi.org/10.1007/BF03321143
Yang T., Xiong J. & Chen H. Effect of process parameters on tensile strength in plasma-MIG hybrid welding for 2219 aluminum alloy. Int J Adv Manuf Technol, 2016, Vol. 84, 24132421. https://doi.org/10.1007/s00170-015-7901-9 DOI: https://doi.org/10.1007/s00170-015-7901-9
Cai D. T., Han S. G., Zheng S. D., Yan D. J., Luo J. Q., Liu X. L., & Luo Z. Y., Plasma-MIG Hybrid Welding Process of 5083 Marine Aluminum Alloy. Materials Science Forum, 2016, Vol. 850, 519525. https://doi.org/10.4028/www.scientific.net/msf.850.519 DOI: https://doi.org/10.4028/www.scientific.net/MSF.850.519
Cai D., Han S., Zheng S., Luo Z., Zhang Y., Wang K., Microstructure and corrosion resistance of Al5083 alloy hybrid plasma-MIG welds. Journal of Materials Processsing Technology, 2018, Vol. 255, 530-535. https://doi.org/10.1016/j.jmatprotec.2017.12.033 DOI: https://doi.org/10.1016/j.jmatprotec.2017.12.033