Direct human-robot collaboration in welding
Main Article Content
Abstract
Current paper deals with a new tendency in robotics, consisting in broader and broader exploiting of socalled collaborative robots, sharing their workspace with humans. An overview of research in this area has been performed. Some aspects of robot programming method, called programming by demonstration, have been discussed. In particular, the authors try to answer the question, whether the idea of direct human-robot cooperation can be applied also in welding. Examples of research in this area have been presented. The paper discusses some as- pects of human-robot communication. It presents a conception of a novel method of calibration of human-robot voice communication system, now under development at the Warsaw University of Technology. This method is focused on specific requirements resulting from the use of collaborative robots.
Downloads
Article Details
Creative Commons CC BY 4.0 https://creativecommons.org/licenses/by/4.0/
Welding Technology Review (WTR) articles are published open access under a CC BY licence (Creative Commons Attribution 4.0 International licence). The CC BY licence is the most open licence available and considered the industry 'gold standard' for open access; it is also preferred by many funders. This licence allows readers to copy and redistribute the material in any medium or format, and to alter, transform, or build upon the material, including for commercial use, providing the original author is credited.
References
Zaeh M., Roesel W.: Safety aspects in a human-robot interaction scenario: a human worker is co-operating with an industrial robot, Progress in Robotics, Vol. 44(2), pp. 53-62, 2009.
Weiss A. i in.: Exploring human-robot cooperation possibilities for semiconductor manufacturing, materiały konferencyjne: International Conference on Collabora- tion Technologies and Systems, Philadelphia, PA, USA, pp. 173-177, 2011.
Fong T., Kunz C., Hiatt L., Bugajska M.: The Human-Robot Interaction Operating System, materiały konferencyjne: 1st ACM SIGCHI/SIGART conference on Hu- man-robot interaction, Salt Lake City, Utah, USA pp. 41-48, 2006.
Pires J.: The Industrial robot as a human coworker: the role of the speech interfaces, materiały konferencyjne: International Conference on Software Development for Enhancing Accessibility and Fighting Info-exclusion, Portugal, 2007.
Rogowski A.: Analiza i synteza systemów sterowania głosowego w zrobotyzowanym wytwarzaniu, Prace Naukowe Politechniki Warszawskiej, Mechanika z. 244, 2012.
Djuric A., Urbanic R., Rickli J.: A framework for collaborative robot (CoBot) integration in advanced manufacturing systems, SAE International Journal of Materials & Manufacturing, Vol. 9(2), pp. 457-464, 2016.
Baratta D.: Industrial collaborative robot design: a guideline for future design activity, materiały konferencyjne: International Conference of the Italian Association for Arti cial Intelligence, Ferrara, Italy, 2015.
Universal Robots on the move, [dostęp: 29-12-2017], https://blog.universal-robots.com/universal-robots-on-the-move
Mobile robot colleagues on wheels increase productivity and worker safety at Scott Fetzer Electrical Group, [dostęp: 29-12-2017], https://www.universal-robots.com/case-stories/scott-fetzer-electrical-group
Zanchettin A., Bascetta L., Rocco P.: Acceptability of robotic manipulators in shared working environments through human-like redundancy resolution, Applied Ergonomics, Vol. 44(6), pp. 982-989, 2013.
Weistroffer V. i in.: Assessing the acceptability of human-robot copresence on assembly lines: a comparison between actual situations and their virtual reality counterparts, materiały konferencyjne: International Symposium on Robot and Human Interactive Communication, Edinburgh, United Kingdom, 2014.
Zaawansowane rozwiązanie robotyczne UR5 przyczynia się poprawy wyników nansowych FWP, [dostęp 29-12-2017], https://www.universal-robots.com/pl/studia-przypadk%C3%B3w/ferdinand-wagner/
Backman B., Renard C.: Simulating Human-Robot Collaboration: an example from cab assembly, praca dyplomowa, Department of Production Engineering, Royal Institute of Technology, Sweden, 2015.
SCOTT Universal Robot welder, [dostęp 29-12-2017], https://www.youtube.com/watch?v=t3_-fUYqa60
Universal Robots showcasing how our cobots work in various industries, [dostęp 29-12-2017], https://www.youtube.com/watch?time_continue=3&v=5K5VYm8z4nY
Veloso M. i in.: CoBots: collaborative robots servicing multifloor buildings, materiały konferencyjne: International Conference on Intelligent Robots and Systems, Algarve, Portugal, 2012.
Kruger J., Lien T., Verl A.: Cooperation of human and machines in assembly lines, CIRP Annals, Vol. 58(2), pp. 628-646, 2009.
Jakubek K.: Bezpieczna współpraca ludzi i robotów,[dostęp 29-12-2017], http://automatykaonline.pl/Wywiady/Bezpieczna-wspolpraca-ludzi-i-robotow
BG/BGIA risk assessment recommendations according to machinery directive. Design of workplaces with collaborative robots, BGIA Institute for Occupational Safety and Health of the German Social Accident Insurance, Sankt Augustin, 2011.
Haddadin S., Albu-Schhaffer A., Hirzinger G.: The role of the robot mass and velocity in physical human-robot interaction - Part I: Non-constrained blunt impacts, materiały konferencyjne: IEEE International Conference on Robotics and Automation, Pasadena, USA, pp. 1331-1338, 2008.
Haddadin S., Albu-Schhaffer A., Frommberger M., Hirzinger G.: The role of the robot mass and velocity in physical human-robot interaction Part II: Uncon- strained Blunt Impacts, materiały konferencyjne: IEEE International Conference on Robotics and Automation, Pasadena, USA, pp. 1339-1345, 2008.
Behrens R., Elkmann N.: Study on meaningful and veri ed thresholds for minimizing the consequences of human-robot collisions, materiały konferencyjne: IEEE International Conference on Robotics & Automation, Hong Kong, 2014.
Universal Robots force move, [dostęp 29-12-2017], https://www.youtube.com/watch?v=szgvFYlY5ps
Kruczyński M.: Zrobotyzowane stanowiska spawalnicze przykłady kon guracji, https://automatykab2b.pl/technika/2230-zrobotyzowane-stanowiska- spawalnicze-przyklady-konguracji#.WjphclXibRb, [dostęp 05-12-2017].
Cegielski P., Kolasa A., Sarnowski T.: Dostosowanie robotów do spawania elementów o obniżonej dokładności, Przegląd Spawalnictwa, Vol. 89 (6), s. 25-28, 2011.
Akgun B., Subramanian K.: Robot learning from demonstration: kinesthetic teaching vs. teleoperation, Georgia Institute of Technology, College of Com- puting, https://www.cc.gatech.edu/grads/k/ksubrama/ les/HRIFinalBK.pdf, [dostęp 29-12-2017].
Kinetiq teaching demo FabTech, [dostęp 29-12-2017], https://www.youtube.com/watch?v=3fMuGHBsGH8
How to teach a linear welding path to a welding robot kinetiq teaching by Robotiq, https://www.youtube.com/watch?list=PLsu4qiywzR4-dtDb8c4uK_ jxzkv4EskjS&v=6BtgdmH8hrk, [dostęp 29-12-2017].
Universal Robot welding Olympus, [dostęp 29-12-2017], https://www.youtube.com/watch?v=Oz7TE1Q1rhw
Universal Robots & IRS MEXICO increased productivity by intuitive welding program, [dostęp 29-12-2017], https://www.youtube.com/watch?v=tGk2LQ5hDNE
Antonelli D., Astanin S., Galetto M., Mastrogiacomo L.: Training by demonstration for welding robots by optical trajectory tracking, materiały konferencyjne: 8th CIRP Conference on Intelligent Computation in Manufacturing Engineering, Torino, pp. 145-150, 2013.
Universal Robots has reinvented industrial robotics, [dostęp 29-12-2017], https://www.youtube.com/watch?v=eCep1HzfXwg&list=PLsxbkRKkMlqIE06i TzinkDKAVgkatH3e3&index=4
Human robot co-operation welding workcell case, [dostęp 29-12-2017], https://www.youtube.com/watch?v=Kxw-SJd-j-o
Wizyjny system bezpieczeństwa SafetyEYE, [dostęp 20-12-2017] https://www.pilz.com/pl-PL/eshop/00106002207042/SafetyEYE-Safe-camera- system
Malm T. i in.: Safety of Interactive Robotics — Learning from Accidents, Springer Science & Business Media BV, Vol.2(3), pp. 221-227, 2010.
Touch sensing & seam tracking, [dostęp 29-12-2017], https://www.youtube.com/watch?v=AStw-K7Sq88
FANUC Through Arc Seam Tracking (TAST), LITHO IN U.S.A: FANUC Robotics America, 2005.
Robotics: Joint Sensing Technologies, Lincoln Electric, [dostęp 29-12-2017], http://www.lincolnelectric.com/en-us/support/process-and-theory/Pages/ intelligent-robotic-detail.aspx
Xu Y., Yu H., Zhong J., Lin T., Chen S.: Real-time seam tracking control technology during welding robot GTAW process based on passive vision sensor, Journal of Materials Processing Technology, Vol. 212(8), pp. 1654-1662, 2012.
Funkcje wspomagające proces spawania w oprogramowaniu ARC TOOL robotów Fanuc, http://roboforum.pl/artykul/funkcje-wspomagajace-proces- spawania-w-oprogramowaniu-arc-tool-robotow-fanuc, [dostęp 29-12-2017].
Tunnell G., Pomernacki Ch., Gregg J.: Voice controlled welding system, Patent US 4641292A, 1987.
Profanter S., Perzylo A., Somani N., Rickert M., Knoll A.: Analysis and semantic modeling of modality preferences in industrial human-robot interaction, IEEE/ RSJ International Conference on Intelligent Robots and Systems (IROS) Ham- burg, Germany, 2015.
Rogowski A.: Industrially oriented voice control system, Robotics and Computer-Integrated Manufacturing, Vol. 28(3), pp. 303-315, 2012.
Stiefelhagen R. i in.: Natural human robot interaction using speech, head pose and gestures, IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan, Vol. 3, pp. 2422-2427, 2004.