Metody wizyjne w automatyzacji spawania; Vision methods in automation of welding

Main Article Content

Grzegorz Sypniewski

Abstract

Streszczenie

W artykule omówiono problematykę wdrożenia systemu wizyjnego do sterowania procesem spawalniczym. Zaprezentowano podstawowe sposoby usuwania zakłóceń oraz algorytmy rozpoznawania obrazu. Przetestowano dostępne na rynku czujniki. 

Abstract

The article discusses the issues of implementation of the vision system to control the welding process. The basic methods of removing noises and image recognition algorithms were presented. Commercially available sensors were tested. 

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
G. Sypniewski, “Metody wizyjne w automatyzacji spawania; Vision methods in automation of welding”, WeldTechRev, vol. 87, no. 1, Jan. 2015.
Section
Articles

References

[1] Kohut P.: Metody wizyjne w robotyce (część II), Przegląd Spawalnictwa, Vol. 81, Nr 1, 2009.

[2] Kruczyński M.: Sensory i układy śledzenia spoiny na zrobo- tyzowanych stanowiskach spawalniczych, Przegląd Spawalnictwa, Vol. 85, Nr 1, 2013.

[3] Mahajan A., Figueroa F.: Intelligent seam tracking using ultrasonic sensors for robotic welding, Robotica Volume 15, Issue 03, May 1997, pp 275-281, DOI: http://dx.doi. org/10.1017/S0263574797000313

[4] Kang-Yul Bae, Jin-Hyun Park: A study on development of in- ductive sensor for automatic weld seam tracking, Journal of Materials Processing Technology 176, s. 111-116, 2006.

[5] Schrattenecker J., Haderer A., Reinthaler G, Stelzer A.: Posi- tion Estimation of Lap Joints for Seam Tracking Applications at mm-Wave Frequencies 978-2-87487-029-3 © 2012 EuMA.

[6] Agapakis J.: Vision-aided remote welding, Ph.D. Thesis MIT 1985.

[7] Kawahara M.: Tracking control system using image sensor for arc welding, Automatica Volume 19, Issue 4, July, s. 357-363, 1983.

[8] Cegielski P.: Analiza uwarunkowań zapewnienia punktu ro- boczego narzędzia w zrobotyzowanych aplikacjach spawania MIG/MAG, Przegląd Spawalnictwa, Vol. 86, Nr 8, 2014.

[9] Kania M.: Dobór optymalnej kamery do zadania wizyjnego, Pomiary Automatyka Robotyka 10/2014.

[10] Hongbo Ma, Shanchun Wei, Tao Lin and Shanben Chen: Binocular vision system for both weld pool and root gap in robot welding process, Sensor Review 30/2 (2010) 116-123 Emerald Group Publishing Limited [ISSN 0260-2288] [DOI 10.1108/02602281011022706].

[11] Ting Xue, Bin Wu: Reparability measurement of vision sensor in active stereo visual system, Measurement 49, 275-282, 2014.

[12] Xizhang Chen, Shanben Chen, Houlu Xue: Comparison of Calibration Methods for Image Center, Robotic Welding, In- telligence and Automation, LNEE 88. Springer-Verlag Berlin Heidelberg 2011.

[13] F. Liu: Research on the Laser Calibration Method for the Ima- ge Plane Center of the Visual Sensor, Robot. Weld., Intellige. & Automation, LNCIS 362. Springer-Verlag Berlin Heidelberg 2007.

[14] Zaojun Fang, De Xu, Min Tan: A Vision-Based Self-Tuning Fuzzy Controller for Fillet Weld Seam Tracking, IEEE/ASME TRANS- ACTIONS ON MECHATRONICS, Vol. 16, No. 3, June 2011.

[15] De Xu, Zhiguo Yan, Zaojun Fang, Min Tan: Vision Tracking System for Narrow Butt Seams with CO2 Gas Shielded Arc Welding, Proceedings of the 5th International Conference on Automation, Robotics and Applications, Dec 6-8, Wellington, New Zealand, 2011.

[16] Hsing-Chia Kuo, Li-Jen Wu: An image tracking system for welded seams using fuzzy logic, Journal of Materials Pro- cessing Technology Vol. 120, s. 169-185, 2002.

[17] Haiyong Chen, Fengxiang Lei, Guansheng Xing, Weipeng Liu, Hexu, Sun: Visual Servo Control system for Narrow Butt Sea, 978-1-4673-5534-6/13/$31.00_c 2013 IEEE.

[18] Yanling Xu, Huanwei Yu, Jiyong Zhong, Tao Lin, Shanben Chen: Real-time seam tracking control technology during welding robot GTAW process based on passive vision sen- sor, Journal of Materials Processing Technology, Vol. 212, 2012.

[19] Jia Qin, Guohong Ma, Pei Liu: Image Processing Algorithm Of Weld Seam Based On Crawling Robot By Binocular Vision, 978-1-4244-9439-2/11/$26.00 ©2011 IEEE.

[20] Yanling Xu, Na Lv, Jiyong Zhong, Huabin Chen, Shanben Chen: Research on the Real-time Tracking Information of Three-dimension Welding Seam in Robotic GTAW Process Based on Composite Sensor Technology, J Intell Robot Syst (2012) DOI 10.1007/s10846-012-9672-y.

[21] Fiertak P.: System wizyjny sterujący zrobotyzowanym stanowiskiem spawania wymienników ciepła.

[22] Zhen Ye, Gu Fang, Shanben Chen, Mitchell Dinham: A robust algorithm for weld seam extraction based on prior knowled- ge of weld seam, Sensor Review 33/2 (2013) 125–133 [DOI 10.1108/02602281311299662.

[23] Xiaogang Liu, Cunxi Xie: Arc-Light Based Real-Time Seam Tracking System in Welding Robot, 2007 IEEE International Conference on Control and Automation.

[24] Yanling Xu, Huanwei Yu, Jiyong Zhong, Tao Lin and Shanben Chen: Real-time image capturing and processing of seam and pool during robotic welding process, Industrial Robot: An International Journal Vol. 39, Nr. 5, s. 513-523, 2012.

[25] Shanchun Wei, Meng Kong, Tao Lin, Shanben Chen: Three- dimensional weld seam tracking for robotic welding by com- posite sensing technology, Industrial Robot: An International Journal Vol. 38, Nr. 5, s. 500–508, 2011.

[26] Liguo Zhang, Jianbin Jiao, Qixiang Ye, Zhenjun Han, Wei Yang: Robust Weld Line Detection with Cross Structured Light and Hidden Markov Model, Proceedings of 2012 IEEE International Conference on Mechatronics and Automation.

[27] Usamentiaga R., Molleda J., García D.: Fast and robust laser stripe extraction for 3D reconstruction in industrial environments, Machine Vision and Applications, Vol.23, s.179-196, 2012.

[28] De Xu, Zaojun Fang, Haiyong Chen, Zhiguo Yan, Min Tan: Compact visual control system for aligning and tracking nar- row butt seams with CO2 gas-shielded arc welding, Int J Adv Manuf Technol, Vol. 62, s. 1157-1167, 2012.

[29] Hongbo Ma, Shanchun Wei, Zhongxi Sheng, Tao Lin, Shan- ben Chen: Robot welding seam tracking method based on passive vision for thin plate closed-gap butt welding, Int J Adv Manuf Technol, Vol. 48, s. 945-953, 2010.