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Abstract: The work covers the welding of thermoplastic polymethyl methacrylate (PMMA) and concerns 

the assessment of the impact of the main welding parameters on joint strength. The strength test of 

welded joints made of thermoplastic material was carried out. The aim of the study was to determine the 

influence of the main technological parameters of welding, such as: temperature and welding speed, gas 

stream output, filler rod pressure, diameter and type of hot air gun nozzle on the strength of the obtained 

joint. The method of sample preparation and testing was performed in accordance with the guidelines of 

PN-EN 12814-2: 2002 "Tests of welded joints in semi-finished products made of thermoplastics ‒ Part 2: 

Tensile test". Visual evaluation of welded samples and analysis of results obtained from the tensile test 

made it possible to draw conclusions about the influence of selected welding parameters on joint 

strength. The decisive influence on the strength of joints was caused by welding defects, in the form  

of lack of side wall fusion and porosity. 
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Introduction 
Plastics (polymers) are currently used in almost all sectors of the economy and in everyday life. They 

are used in household appliances, automotive, medicine, textile, aviation, machine, chemical, armament, 

agriculture, electronics, construction and many others [1,2]. In the world, ready-made products or semi-

finished products made of polymers of various shapes and dimensions are increasingly being used in place 

of construction materials (e.g. metals, wood, glass, stone). They are used as basic or special materials due  

to their physical and chemical properties. A large number of polymeric materials or plastics are currently 

known. No other material group known can achieve such a variety of types. They are characterized by  

a very wide range of properties, and each year a new range of polymers and plastics obtained from them is 

introduced to the market or existing ones are improved [3]. The production of polymers and additives is 

one of the best developing industries in the chemical industry. Polymer materials are used so often because 

of their advantages such as low specific gravity, high resistance to chemical agents, ease of processing  

and dyeing, the possibility of obtaining transparent products, aesthetic appearance, corrosion resistance, low 

processing temperature, possibility of multiple processing (recycling) etc. [4]. Compared to metals, polymeric 

materials are characterized by much lower strength (tensile strength of PMMA material reaches 75 MPa)  

and impact strength (up to 30÷40 times), low shape stability or lower resistance to temperature changes. 

The development of plastics resulted in the necessity of joining them, which contributed to the 

development of new welding and joining techniques. Easy access to plastics contributed to the 

development of methods and devices with more precise control systems, a higher degree of automation 

and better control for their processing. It is possible to both cut and join elements made of plastics, e.g. by 

welding, gluing or laminating [5].  

Products made of polymers may be damaged during use. Some plastic products may be regenerated 

[6]. Welding [7] can be one of the repair methods, i.e. the permanent connection of these products. Welding 

of plastics requires appropriate experience to prevent failure to maintain important process variables, such 

as overheating of the welding site, improper preparation of welded edges, or welding of two different 

types of plastics, which may lead to unsatisfactory quality of the joint [8,9]. 

It should be remembered that correctly carried out the process of welding plastics does not give 

complete assurance of obtaining a certain level of quality of the welded joint, guaranteeing its strength 
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ensuring load transfer. Assessment of the welding process in terms of the required level of joint quality 

requires knowledge of the phenomena associated with the formation of the joint (softening of the plastic, 

diffusion of macromolecules, heat transport, formation of flashes). The analysis of this information makes it 

easier to predict the quality and expected properties of the welded joint, and also helps to control the 

welding process. Quick adjustment of process parameters is possible if irregularities in the welding process 

are detected [10,11]. The purpose of this work was to investigate the effect of selected technological 

parameters of the welding process of thermoplastics PMMA (polymethyl methacrylate) in the hot gas (air) 

stream on the quality of joints obtained. 

Subject of the research 
Samples for welding in the hot air stream were made of PMMA (polymethyl methacrylate). This 

material is produced in the form of plates, blocks, rods and pipes. It is used for aviation and car windows, 

lenses, headlights, household items, machine components. Polymethyl methacrylate is a thermoplastic 

material, naturally transparent. It can be easily dyed any color and with different light transmittance. 

PMMA is resistant to weather conditions, low temperature, grease, oil and water. It burns slowly with a 

yellow and blue glowing flame [12]. The main properties of PMMA are listed in table I. 

Table I. Selected properties of polymethyl methacrylate (PMMA) [13] 

Density [g/cm3] 1.12÷1.20 

Melting temperature [°C] 160 

Tensile strength [MPa] 20÷75 

Compressive strength [MPa] 100 

Young's modulus [MPa] 3200 

Elongation [%] 2÷10 

Charpy’s impact strength (unnotched) [J/cm2] 1 

Thermal conductivity [W/m°C] 0.18 

Hardness [Mohs] 2÷3 

Light transmission [%] 92÷99 

Test stand 
Welding of PMMA samples was carried out manually in a stream of hot air using a Technet 858D 

welding machine with a power of 700 W. The welding machine enables smooth temperature control in  

the range from 100 to 450 °C. The temperature is controlled by a sensor located at the hot air gun’s outlet.  

The hot air flow can be adjusted to 120 l/min. The device has replaceable round welding nozzles with 

diameters of 3, 5, 7 mm, flat 9 mm and square 10 x 10 mm. 

The MTS Bionix strength testing machine, model 370.02, was used for the tensile test of the obtained 

welded joints. Joint tension was carried out at a speed of 1 mm/min, automatically recording the change  

in force and the extension of the sample. 

As part of the planned tests, welded joints of prepared samples made of PMMA were made. Samples 

were welded with the following variable parameters: air temperature, welding speed, pressure, gas flow, 

nozzle diameter and nozzle shape. The same type and dimensions of the filler rod and constant distance 

between the hot air gun and the surface of the samples were used in all samples. The list and designation of 

parameters and welding samples are given in table II. The initial welding parameters were selected on the 

basis of preliminary tests: temperature 350 °C, speed 30 mm/min, pressure 10 N, gas flow 40 l/min, using  

a nozzle with a diameter of 5 mm. In addition to these parameters, the study also used increased and 

reduced values compared to those initially adopted. 

After the welding process, a visual assessment of the quality of the weld was carried out by 

determining the occurrence of such incompatibilities as weld unevenness, sticking and lack of penetration, 

incomplete penetration, lack of welding groove fill, too high weld, visible porosity, stains, streaks, 

discoloration, charring occurring in the weld and in the heat affected zone (HAZ), lack of continuity of the 

weld, cracks, no leakage, differences in the mutual position of the welded elements in relation to the solid 

welded sample. Visual tests were carried out in accordance with the guidelines of the Office of Technical 

Inspection No. UDT-ST-1/00. 
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Table II. Welding parameters for the tested PMMA samples (* – the same sample – standard) 

Sample 
Temperature 

[°C] 

Welding speed 

[mm/min] 

Downforce 

[N] 

Gas flow 

[l/min] 

Nozzle shape 

[mm] 

Temperature effect 

T1 330 

30 10 40 round ø5 T2* 350 

T3 370 

Speed effect 

V1 

350 

15 

10 40 round ø5 V2* 30 

V3 60 

Filler rod downforce effect 

P1 

350 30 

5 

40 round ø5 P2* 10 

P3 15 

Gas flow effect 

Q1 

350 30 10 

20 

round ø5 Q2* 40 

Q3 60 

Nozzle diameter effect 

D1 

350 30 10 40 

round ø7 

D2* round ø5 

D3 round ø3 

Nozzle shape effect 

K1* 

350 30 10 40 

round ø5 

K2 flat 9x2 

K3 square 10x10 

Samples for testing 
The test samples were made of transparent 4mm thick PMMA. Type 1 fitting (Fig. 1) for flat joints was 

selected for strength tests in accordance with PN-EN 12814-2: 2002 (Tests of welded joints in thermoplastic 

semi-finished products - Part 2: Tensile test). The dimensions of the welding samples are given in table III. 

 
Fig. 1. Type 1 tensile specimen for flat joints: 1 – weld, a – thickness, b – width, Lo – gauge length, Lw – the largest 

width of the excess weld metal, L – total length 

Table III. Dimensions of type 1 tensile specimens for flat joints according to PN-EN 12814-2:2002 

a [mm] b [mm] Lo [mm] L [mm] 

a ≤ 10 15 120 ≥170 

10 < a ≤ 20 30 120 ≥300 

a > 20 1,5a 200 ≥400 
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The permissible deviation for the "b" value is ± 1 mm, and for the "Lo" value it should be ± 2 mm.  

The welding groove for the planned tensile test was chamfered on "X" (weld X), according to the 

dimensions given in figure 2. For welding the prepared samples, a welding wire made of orange-colored 

transparent PMMA with a tensile strength of 25 MPa was used. The filler rod has a cross-section of an 

isosceles triangle with 3.5 x 2.3 mm sides and a length of 450 mm. 

 
Fig. 2. Preparation of the edges of materials for welding [14] 

Research results 
Figure 3 shows the fracture view of the solid sample (L1) after the tensile test. The results obtained from 

tensile strength tests and tensile curves for a solid sample are presented in table IV and figure 4. The average 

value of tensile strength of solid samples was 25.76 MPa. 

  
(a)       (b) 

Fig. 3. a) View of the fracture surfaces after tensile test, b) force-displacement curve of the solid sample 

Table IV. Test results of tensile strength of a solid sample: a – sample thickness, b – sample width, A – cross-sectional 

area of the sample, ΔL – elongation, Fr – maximum force during tension, r – tensile strength 

Sample  

designation 

Dimensions of the solid 

sample ΔL 

[mm] 

Fr 

[N] 

σr 

[MPa] 

Description of  

the sample fractures a 

[mm] 

b 

[mm] 

A 

[mm2] 

L1 4.00 15.68 62.72 1.18 1611.56 25.69 brittle fracture 

L2 4.00 15.62 62.48 1.19 1609.74 25.76 brittle fracture 

L3 4.00 15.63 62.52 1.17 1613.42 25.81 brittle fracture 

Numerical results obtained from tensile strength tests are presented in table V for all samples. The stated 

KS value is the relative strength of the welded joint compared to the solid sample. An example of the graph 

of the tensile curve for T samples is shown in figure 5. As can be seen from table V, the maximum tensile 

strength of welded joints was 16.89 MPa, which accounted for approximately 65% of the solid material's 

tensile strength. 
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Fig. 5. Characteristics of the tensile test of samples: T1, T2, T3 

Table V. Test results of the strength of PMMA welded joints 

Sample 
Elongation 

ΔL [mm] 

Force  

Fw [N] 

σr 

[MPa] 

Relative strength  

of the joint KS [%] 

L1 1.18 1611.56 25.76 ‒ 

T1 0.46 635.93 10.63 41.28 

T2* 0.74 1051.16 16.89 65.56 

T3 0.44 606.66 9.75 37.86 

V1 0.31 435.50 7.03 27.30 

V2* 0.74 1051.16 16.89 65.56 

V3 0.40 566.56 9.18 35.63 

P1 0.37 584.56 9.31 36.13 

P2* 0.74 1051.16 16.89 65.56 

P3 0.60 865.92 13.87 53.84 

Q1 0.38 535.51 8.77 34.06 

Q2* 0.74 1051.16 16.89 65.56 

Q3 0.49 658.34 10.91 42.34 

D1 0.35 466.44 7.76 30.14 

D2* 0.74 1051.16 16.89 65.56 

D3 0.33 498.71 8.07 31.35 

K1* 0.74 1051.16 16.89 65.56 

K2 0.45 633.21 10.66 41.38 

K3 0.32 458.15 7.21 27.98 

where: ΔL ‒ elongation, Fw ‒ maximum force during tension, σr ‒ stress,  

KS ‒ relative strength of the joint, * the same sample 

Effect of the temperature 
Welded joints were made for three values of air stream temperature: 330, 350 and 370 °C, adopted  

on the basis of preliminary tests. The resulting welded joints and their fractures after the tensile test (Fig. 6) 

were subjected to external examination, the purpose of which was to assess the occurrence of welding 

incompatibilities in the joints. 

The data obtained in the conducted tensile test for individual samples were compiled, and the results 

of tensile strength tests of samples obtained at different heating temperatures are summarized in table V.  

The T1 sample has a small HAZ range in the form of gas pores on the surface. A small number of 

small gas pores appear in the weld. PN-EN13100-1 does not specify detailed requirements related to the 

visual assessment of the joint (such requirements should be included in the agreed acceptance conditions). 

The sample was broken in the weld and on the contact surface (lack of side fusion). There are few gas pores 

visible on the surface of the fracture. The T2 sample shows a larger HAZ (gas pores) range than T1 and small 
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pores in the weld. The sample rupture occurred in the weld. The porosities are visible on the fracture surface. 

Sample T3 has numerous porosities in the weld. The HAZ range is larger than in the T2 sample. The rough 

face of the weld is visible. Sample rupture occurred in the weld and on the contact surface. Porosities are 

clearly visible on the fracture surface.  

  

Fig. 6. View of the samples welded at different temperatures: a) welded joints, b) sample fractures after tensile test 

The analysis of the data shows that in the case of the first sample (T1), insufficient softening of the 

welded material was not obtained, hence the resulting lack of side fusion. As the gas (air) temperature 

increased, the welded plastic became increasingly softened. Joint strength increases, but only up to a point.  

At higher and higher welding temperatures, the larger and larger gas pores, both in the weld and on the 

surface of the welding groove, intensified. Porosities are the main reason for the decrease in joint strength 

(sample T3). Higher welding temperatures cause the plastic to decompose. Its increase of 20 °C caused a 

decrease in joint strength by over 25% (sample T3) compared to sample (T2). 

Effect of the welding speed 
Welded joints were made at three welding speeds of 15, 30 and 60 mm/min. The obtained joints and 

their fractures after a tensile test (Fig. 7) were subjected to external examination. The results of the relative 

strength tests of tensile samples obtained at different welding speeds are given in table V. 

In sample V1, numerous large gas pores are observed in the weld and in the heat affected zone.  

The weld face is rough and HAZ has a wide reach (up to approx. 8 mm). There is no groove filling at the end 

of the joint. The sample was broken in the weld and on the contact surface. Large gas pores are clearly visible 

on the fracture surface. 

  

Fig. 7. View of the samples welded at different velocities: a) welded joints, b) sample fractures after tensile test 

The V2 sample also shows numerous large gas pores in the weld as well as a rough weld face and a 

fairly wide heat affected zone (about 5.5 mm). There is no groove filling at the end of the joint. The sample 

was broken in the weld and on the contact surface. Large gas pores are visible on the surface of the fracture.  

The V3 sample has the smallest HAZ range (approx. 4.5 mm) and there are small gas pores. Sample rupture 

occurred in the weld and on the contact surface (lack of side fusion). 

Low welding speed ‒ 15 mm / min (sample V1) causes that both in the joint and in the heat affected 

zone there are numerous and large gas pores, due to too much heat supplied to the sample and the filler 

rod, which leads to partial destruction of the material. Increasing the welding speed to 30 mm/min causes  

a decrease in the size and number of gas pores, which translates into an increase in the strength of the joint. 

A further two-fold increase in welding speed (from 30 to 60 mm/min) causes that the amount of heat supplied 
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to the sample decreases. PMMA plastic is less and less soften, which makes it difficult to "mix" the polymer 

chains, and in addition lack of side wall fusion is formed in the joint. The effect of this is a decrease in the 

strength of the joint. The main causes of low strength in this case are arising lack of side wall fusion and 

porosity. As the welding speed increases, the aesthetics of the joint increases, but the joint strength decreases. 

Effect of the filler rod force 
The welded joints obtained with different filler rod force (5, 10, 15 N), and their fractures were 

subjected to external examination (Fig. 8). The filler rod downforce was determined by reading and counting 

the indications of the measuring scale on which the welded samples were placed, under the pressure of  

the filler rod. The results of tensile strength tests of welded samples at different filler rod force are presented 

in table V. 

The P1 sample shows a small HAZ range (approx. 5 mm) and small gas pores in the weld. The weld 

has a slightly convex face. The sample was broken in the weld and on the contact surface. 

  

Fig. 8. View of the welded samples subjected to the impact of filler rod downforce: a) welded joints, b) sample 

fractures after tensile test 

Gas pores are visible on the fracture’s surface. Sample P2 also has a short range of the heat affected 

zone (5.5 mm) and small pores in the weld. The joint was broken in the weld. Gas pores are visible on  

the fracture’s surface. The P3 sample shows a small HAZ range (3.5 mm) and small gas pores in the weld. 

From the side of the ridge you can see incomplete filling of the groove (thinning of the weld), and from the 

opposite side of the convex face of the weld. The sample was broken in the weld and on the contact surface. 

Porosities are visible on the fracture’s surface. 

At the pressure of the filler rod with 5 N force (sample P1), the polymer chains probably did not get 

close enough to create a permanent and durable joint. As the downforce increases, the strength of the joint 

increases, but only up to a point. Further increase of the adhesive force to 10 N (sample P3) causes that the 

heated welding groove begins to deform. Increased pressure caused that with the bead made from the 

upper side of the sample, the face of the weld was concave, and from the side of the ridge an overhang was 

formed. The overhang, as a consequence, reduced the depth of the groove, and after making the bead on the 

other side, an excess weld was formed. This resulted in a decrease in the weld cross-section that carries  

the load. However, increasing the downforce also causes the polymer chains to move closer together, which 

means that despite the reduced weld cross-section, the joint strength is relatively high (approx. 16 MPa).  

Further increase of the downforce to 15 N causes that the weld cross-section decreases and the joint 

transfers less and less stress. 

Effect of the gas flow rate 
Figure 9 shows the welded joints obtained at different gas flow rates (20, 40 and 60 l/min) and their 

fractures after a tensile test. The results of tensile strength tests of joints obtained at different heating gas 

flow rates are presented in table V. 

The Q1 sample has a small HAZ range (2.5 mm) and few gas pores. The joint was broken in the weld 

and on the contact surface (lack of side fusion in the place marked with an arrow in Fig. 9b). The Q2 sample 

has a larger HAZ range (5.5 mm) than the Q1 sample, as well as fine weld gas pores. The joint was broken 

in the weld. Porosities are visible on the fracture’s surface. The Q3 sample shows small, more numerous gas 

pores in the weld compared to the Q2 joint. Greater concentration of gas pores occurs in the HAZ (width 

approx. 4.5 mm), the face of the weld is quite rough. The sample was broken in the weld and on the contact 

surface. Porosities are visible on the fracture’s surface. 
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Fig. 9. View of the samples welded with a different air flow rates: a) welded joint, b) sample fractures after tensile test 

Low gas flow (20 l/min) means that the plastic is not softened enough, which results in low strength,  

on average about 8.7 MPa (lack of side fusion). Increasing the air flow increases the softening of the 

material and the strength of the joint. Confirmation of this fact is the breaking of the sample in the weld, 

not on the contact surface (Fig. 9). The increase in strength takes place only up to 40 l/min. Further increase 

in gas flow (up to 60 l/min) causes a decrease in strength. The reason for the decrease in joint strength are, 

among others, gas pores rising more and more. As the flow of hot air increases, the number of trapped 

(closed) gas pores between the welded sample and the weld increases. The number of gas pores resulting 

from the decomposition of the material also increases. 

Effect of the nozzle diameter 
Figure 10 shows the joints obtained at different nozzle diameters (3, 5, 7 mm) and their fractures after 

a tensile test. 

During welding, it was observed that the smaller the diameter of the nozzle, the more heated air 

escapes through the side cut-out in the nozzle (Fig. 11). The notch in the nozzle serves to protect the hot air 

gun from overheating. The results of tensile strength tests of joints obtained for different nozzle diameter 

are given in table V. 

  

Fig. 10. View of the samples welded with the different nozzle diameters: a) welded joint, b) sample fractures after 

tensile test 

Sample D1 shows a wide range of heat affected zone (8÷8.5 mm) and numerous clusters of gas pores 

in the weld. The face of the weld is rough. The sample was broken in the weld and on the contact surface. 

Large gas pores are visible on the surface of the fracture. HAZ has a smaller range (about 5.5 mm) on the 

D2 sample than on the D1 sample. Small pores are visible in the weld. Sample rupture occurs in the weld. 

Porosities are visible on the fracture’s surface. In sample D3 there are no obvious incompatibilities, traces of 

gas pores are possible. The sample was broken in the weld and on the contact surface (lack of side fusion). 

The size of the nozzle diameter affects the amount of heat supplied to the welding area. As the 

diameter decreases, the softening of the welded material decreases, and the number of porosities formed 

decreases. This translates into the strength of the joint and the resulting welding defects: porosity and lack 

of side wall fusion. At a nozzle diameter of 7 mm (sample D1), a low relative strength of 30% of the parent 

material was obtained, which was due to the increased number of porosity present in the joint compared to 

other samples. With a nozzle diameter of 5 mm (sample D2), the highest joint strength was obtained. In 

turn, the small diameter of the nozzle (3 mm in sample D3) causes that the material in the welding area has 
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poorly softened and, as a result, lack of side wall fusion has been formed. At this diameter of the nozzle, 

however, the best joint appearance was obtained. Studies have also shown that the nozzle design itself has 

a significant impact on the strength of the joint. As the diameter of the nozzle decreases, the amount of 

heated air escaping through the lateral undercut in the nozzle increases. Limiting the diameter improves 

the appearance of the weld, and better welding control is also possible.  

 

Fig. 11. Picture of the nozzles for welding in a stream of hot air 

Effect of the nozzle shape 
Figure 12 shows welded joints made using various shapes of hot air gun nozzles (round, flat, square) 

and their fractures after a tensile test. When welding with a 10 x 10 square nozzle (sample K3), there is  

a problem with applying adequate pressure (10 N). The outflow of air stream through the nozzle (larger 

surface) causes softening of the additional material (filler rod) at a considerable height. The results of 

tensile strength tests of joints obtained for various nozzle shapes are given in table V. 

  

Fig. 12. View of the samples welded with the different nozzle cross-sections: a) welded joint, b) sample fractures after 

tensile test 

The K1 sample shows a small range of heat affected zone (approx. 3 mm) and small pores in the weld. 

The sample was broken in the weld. Porosities are visible on the fracture’s surface. The K2 sample also 

shows a small HAZ range (about 5 mm), as well as small gas pores in the weld. Sample rupture occurred  

in the weld and on the contact surface. Porosities are visible at the fracture. The K3 sample has a wide range 

of heat affected zone (about 7.5 mm) and large, numerous gas pores in the weld. The joint volume increases 

as well as the rough face of the weld. The sample was broken at the contact surface (lack of side fusion). 

Porosities are visible on the fracture’s surface. 

The round nozzle best concentrates most of the heated air within the welding groove. Despite the fact 

that the flat nozzle has a similar outlet surface as the round nozzle, the joint strength is almost 25% lower.  

It is influenced by the width of the nozzle ‒ the wider it is (in relation to the width of the groove), the more 

heated air escapes outside the area of the welding groove, which causes only partial softening of the 

welded material in the area of the welding groove and increases the range of heat affected zone. The use of  

a 10x10 mm square nozzle (sample K3) means that the additional material is softened at a much greater 

height, which makes it difficult to exert the assumed pressure. The 10x10 square nozzle also causes a lack  

of adequate softening due to excessive escape of heated air from the sides (no focus in the welding groove) 

and the obtained strength does not reach the level of 30% relative strength. The use of this nozzle results  

in the greatest HAZ reach and the least esthetic weld. The use of a square nozzle, due to the size of the 

outlet surface, has the greatest impact of heat on the combined sample materials. 
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Analysis of the results 
Numerical results obtained from tensile strength tests of all variants of welding parameters for welded 

joints of polymethyl methacrylate (PMMA) are presented in table V. However, figure 13 presents a 

graphical comparison of the effect of all analyzed welding parameters of plastic from PMMA on the 

relative strength of the joint (KS). As indicated earlier in table V, the set of samples from No. 2 is the same and 

common for all analyzed test results. 

    

 

 

Fig. 13. A summary of the influence of PMMA welding parameters on the relative tensile strength of the joint (KS) 

The analysis shows that in all cases of tested welding parameter combinations it was possible to 

obtain a joint.  

The results of testing the strength of welded joints made of polymethyl methacrylate (PMMA) show 

that only in two cases of thermoplastic welding parameters summary, the joint strength was obtained  

at a level greater than 50% (Fig. 13). The visual assessment of the joints indicates that welding defects 

occurring in the joints, mainly gas pores and lack of side fusion, have the greatest impact on the achieved 

strength. The presence of adhesions in most cases disqualifies the suitability of a given joint for operation. 

At the fractures of the samples, the presence of lack of side wall fusion as well as gas pores of various sizes 

was visible. The reason for the lack of fusion was too low heat input, insufficient to soften the edge  

of the welding groove or previously made weld bead. One of the reasons for the lack of fusion may also be 

the wrong welding technique (one-sided torch tilt). This is visible even in Figure 10a (samples D1, D2), 

which is also manifested by the uneven coverage of the heat affected zone (HAZ). 

Inspection of joints shows that the most common and most easily recognized welding defects were gas 

pores, both in the weld and on the surface of the joined elements. This was confirmed by visual inspection 

of the joints as well as after observation of the obtained fracture of the sample. The resulting gas pores have 

a dual nature. They arise as a result of destruction (decomposition) of the welded material or are the result 

of "closing" of air particles between the welded elements (native material ‒ weld).  

It should be remembered that the amount of heat introduced into the welded elements has the 

greatest impact on the quality of the joint. It can be controlled, among others by temperature, welding 

speed, gas flow rate and nozzle designs (size, shape), distance between the nozzle tip and the welded parts.  

Summary and Conclusions 
The growing demand for effective and reliable welding methods, as well as requirements related to 

the increase in the quality and strength of obtained products are the main reason for the development of 

plastic welding methods. Research conducted in this direction is to certify the suitability of welding 

processes for welding thermoplastics.  

The main purpose of the research was to determine the impact of welding parameters on the strength 

of welds made of polymethyl methacrylate (PMMA). The research carried out in the work allowed to 
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obtain joints which in the majority of the adopted parameters were characterized by medium quality and 

durability. This was confirmed both during the examination of the samples and in the strength tests carried 

out. The research shows that the welding parameters used in many cases cause similar defects in the joints, 

which have a decisive impact on their strength. Lack of side fusion and gas pores were caused by too little 

or too much heat supplied. The amount of heat input to the welding area is differently affected by other 

welding parameters. 

Certainly, it is possible to achieve greater strength of PMMA welded joints, but this requires more 

extensive research, with a much larger number of variants and combinations of welding parameters used. 

Based on the tests carried out on welded joints of polymethyl methacrylate and analysis of the results 

obtained, the following conclusions can be drawn: 

• Welding incompatibilities have a decisive impact on the strength of welded joints, mainly in the form 

of lack of side fusion and porosity. 

• Porosity was the most common welding defect in the joints. 

• No cracks were observed in the heat affected zone. 

• The increase in welding temperature increases the strength of the joint until there is no significant 

distribution of the welded material, which is manifested, among others, in the form of porosity. 

• Increasing the welding speed results in an increase in the strength of the joint, even until sufficient 

softening is achieved. 

• When selecting the filler rod’s downforce, in addition to the shape and size of the additional material,  

the type of weld and the bevel of the welding groove should be taken into account. 

• When applying more than 10 N downforce (in relation to the filler rod surface) one-sided welds 

(beads) should be made. 

• Increasing the filler rod force results in a greater number of more similar polymer chains, which with  

a reduced weld cross-section translates into a relatively high strength of the joint. 

• With an increase in hot air flow to 40 l/min. the strength of the joint increases, but only until the 

softening of the material has a decisive impact on the strength of the joint, and not the resulting 

porosity. 

• As the diameter of the nozzle decreases, the amount of air escaping through the side cut-out in the hot-

air gun increases and the material becomes less softened. 

• An increase in nozzle diameter from 3 to 5 mm results in an increase in joint strength in a similar way 

as when testing the effect of temperature and gas flow. 

• The smaller the diameter of the nozzle, the easier and more accurately you can control the formation  

of the weld. 

• The round nozzle is most advantageous for concentrating heated air within the welding groove, the 

larger the nozzle width, the greater the HAZ range and the more difficult the welding process is to 

control. 

• The greatest impact on the joint formation process is the amount of heat supplied to the welding area, 

which can be controlled by temperature, welding speed, gas flow, nozzle size and shape. 
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