
 

Welding Technology Review – www.pspaw.pl    Vol. 91(12) 2019   7 

 
DOI: http://dx.doi.org/10.26628/wtr.v91i12.1084 
 

Article 

Condition monitoring of crack extension in the reinforced 
adhesive joint by carbon nanotubes 

Omid Sam-Daliri1, Mohammadreza Farahani1 and Alireza Araei1,* 

1 School of Mechanical Engineering, College of Engineering, University of Tehran, Iran 
Ph. D. Omid Sam-Daliri, email: Omid_sam@ut.ac.ir; 
Prof. Mohammadreza Farahani, mrfarahani@ut.ac.ir; 
* Correspondence: Prof. Alireza Araei, alaraee@ut.ac.ir 

Received: 02.09.2019; Accepted: 12.11.2019    

 Abstract: Carbon nanotubes (CNT) are ideally suited to be employed for damage sensing in fiber 

reinforced composite structures. In this work, the capability of CNTs for crack extension of a single lap 

Al-Al adhesive joints (SLJ) under shear load is studied using electrical resistance change. Different 

weight percent of CNT are added to epoxy adhesive. Epoxy adhesive with high concentration of CNT is 

obtained during shear loading to have the maximum strength and provide the best sensory properties. 

To provide a more concise evaluation of the crack extension in the adhesive layer under shear load, 

artificial defects are embedded into the SLJ specimens. The effects of square and circular defects with two 

different sizes on the crack extension in the adhesive layer are evaluated. The results showed that the 

maximum relative resistance change has occurred by 220% when the microcracks are initiated and 

accordingly developed from the nanoadhesive and changed its direction from the Square defect 

boundary. Additionally, in comparison with interface fracture in defective adhesive joint, when a part of 

crack grows through the adhesive layer, the resistance change showed higher values. 
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Introduction 
Adhesive joints are employed in manifold areas such as automotive, marine, aircraft, and oil and gas 

industry. These applications profit from the advantages of adhesive joints, such as less weight, even 

distribution of the load path and decreased stress concentration compared to, e.g., fastening and welding 

joints. However, easy inspection of adhesive joints is often only possible in a destructive way. 

Nondestructive inspection requires more elaborate methods and strategies. Recent research addresses NDT 

approaches for damage detection in adhesive joints. Michaloudaki et al. [1] detect artificial imperfections in 

adhesive joint by the neutron radiography method. Ren et al. [2] study adhesive defects between composite 

laminates using ultrasonic guided wave technique. Palumbo et al. [3] study debonding in adhesive composite 

joints by lock-in thermography and ultrasonic C-scan imaging. Croccolo et al. [4] use acoustic emission as 

condition monitoring technique for the evaluation of defect densities in adhesive bonding to predict the 

actual failure load of the adhesive joint. Some of these techniques, like acoustic emission are online 

methods for determining the damage progression in bonded joints and composites as reported by Cawley 

[5] and De Freitas [6] respectively. Such online methods enable to predict the onset and progression of 

damage under the mechanical load. 

In this context, Multi-Wall Carbon NanoTubes (MWCNTs) with distinctive mechanical and electrical 

properties can be employed to strengthen, but also monitor the joints condition. Thostenson et al. [7] study 

the tensile behavior of CNT-epoxy nanocomposite films. The authors report that, by adding the carbon 

nanotubes to the polyester matrix, the tensile modulus, yield strength and ultimate strength of the final 

polymer films are increased. Li et al. [8] reached an improvement in electrical properties of CNT-epoxy 

nanocomposite by surface treatment of the carbon nanotube specimens. These properties build the 

foundation to use carbon nanotubes dispersed in epoxy as in-situ sensors for many applications. The 

electrical resistance of the MWCNT-epoxy nanocomposite sensor changes under applied mechanical 

stress. The changes in electrical resistance result from deformation and damage progression in the polymer 

composite structures. Based on the changes in electrical resistance, Kwon et al. [9] use several MWCNT thin 

films for damage sensing in Carbon fiber epoxy composites. In further studies, MWCNT- epoxy 
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nanocomposite are used for damage sensing by analyzing the changes in electrical resistance [10,11]. These 

sensory features of MWCNT-epoxy nanocomposites are exploited to use these nanocomposites as strain 

sensors for health monitoring in industry [12,13,14,15]. 

The present work studies the sensory capabilities of the defective single lap CNT-epoxy adhesive 

joints under quasi-static loading conditions using an Alternating Current (AC) stimulus. For comparison, 

different weight percentages of MWCNT are added to the adhesive layer. The electrical resistance response 

of the adhesive joints is then measured during shear loading. Furthermore, the microstructure of the 

fracture surface of the adhesive layer is evaluated by Scanning Electron Microscopy (SEM) to infer a 

correlation between the microstructure and forming of the conductive networks in the adhesive layer. 

Then, several square and circular defects were embedded in the adhesive layer to analyse their influence on 

the damage progression in the electrical resistance response during the shear load. 

Materials, Specimens Preparation and Measurement Methods 

Materials and specimens preparation 
The prepared nanoadhesive contains epoxy as the matrix and MWCNTs as the conductive nanofiller. 

The employed epoxy resin is EpoThin® (Buehler, Germany) which is a free flowing, low viscosity, low 

shrinkage epoxy resin which allows the nanofiller to easily distribute in the EpoThin matrix. It has a typical 

cure time of nine hours at 27 °C or can be kept at room temperature for 24 hours according to the 

manufacture datasheet. It is provided by Buehler Company. MWCNTs nanoparticles by Cheaptube (USA) 

are used in this study. The outer diameter of the employed MWCNT is dp = 30 to 50 nm. The length of the 

used MWCNT is between lp = 10 to 20 µm with a purity more than 95%. Type 5754 (Al-Mg3) aluminum plates 

are used as adherents for the single lap adhesive joints. These adherends are manufactured according to the 

ASTMD5868-01 standard with a thickness t = 3 mm, length La = 102 mm, and width w = 25 mm. Mechanical 

properties of the Al adherent according to the manufacturer data sheet (Cut-Cut Corporation in Salzburg) are 

given in table I. 

Table I. Mechanical properties of Al-Mg3  

Poisson's ratio Elastic modulus Ultimate strength Yield strength 

0.33 68 (GPa) 330 (MPa) 280 (MPa) 

Weighed amounts of epoxy resin and MWCNT (measured by a digital scale with accuracy equal  

to 0:0001 g) are mechanically stirred for ts = 5 min in a beaker. The mixture was then placed in a shear mixer 

(IKA T18 digital ULTRA TURRAX) at 1000 rpm for tm = 15 min. Then, the dispersion of the MWCNT in the 

epoxy resin is further aided using a sonication bath. A sonication bath with high frequency (fb = 35÷60 kHz)  

is used to disperse the MWCNT in the epoxy resin appropriately and break the agglomerated particles. 

Weight percentages of 2.5, 6 and 9 wt.% MWCNTs are added to the epoxy resin [16]. Then the obtained 

material was mixed with a hardener in the ratio of 2:1 for th = 15 min on the stirrer and was immediately 

poured into the SLJ molds. Internal surfaces of the mold are covered with RENLEASE QV 5110 wax to ensure 

that no bond is formed between the Al adherents and the molds. The molds are designed so that the 

thickness of the adhesive layer is ta = 1 mm for all specimens. The adhesive layer further covers a length L = 

30 mm. In order to assess the effects of macroscopic defects on the impedance response of the SLJs, defects 

of different sizes and shapes are embedded in the center of the adhesive layer. The defects are prepared 

from rubber with td = 1 mm thickness. The outer surface of the defect is also covered by wax to prevent 

bonding between the nanoadhesive and the defects. After 24 h, the SLJ samples are extracted from the 

mold. The SLJs during and after preparation are shown in figure 1 respectively. Non-conductive end tabs 

are attached to the adherents to make an alignment in the universal tensile machine so that the center line 

of the upper and lower tabs pass through the middle of the adhesive [17], as well as to electrically isolate 

the specimens from the tensile test machine. In order to measure the electrical properties of the specimens, 

metallic wires are attached to the specimens using conductive copper adhesive. In order to also analyze the 

effects of defective adhesive joints, defects were added to the adhesive layers, both of square or circular 

shape and with different size. The defect shapes and sizes chosen in this study are given in table II. 

Table II. Size and shape of 3D defects 

Defect shape Defect area/overlap area [%] Defect size [mm] 

Circular 10, 30 Radius: 4.88, 8.46 

Square 10, 30 Length: 8.66, 15 
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Fig. 1. Single lap adhesive joint: a) fabrication set up, b) preparation and c) specimens 

Mechanical and Electrical Acquisition System 

The effects of various filler contents are investigated on the initial equivalent parallel resistance (RP)  

of the adhesive joint. Then, the specimens were subjected to a shear load until fracture using a Zwick/Roell 

Z020 universal testing machine. A crosshead displacement rate of dr = 1 mm/min is applied [9,18,19]. The 

tensile force, longitudinal displacement and voltage changes versus time are measured concurrently. 

The electrical measurements are conducted in two steps. In the first step, the frequency dependent 

initial resistance of the specimens is determined using an LCR measurement bridge by Extech Instruments. 

This instrument determines the equivalent parallel resistance (indicated by RP in table III) at different  

frequency settings. This is done assure suitable resistance values and to determine a suitable frequency for 

the subsequent tensile testing. The second step is the electrical resistance change during tensile loading. 

These measurements are done using a high-speed, high-resolution measurement platform [20]. The electro-

mechanical measurement setup is demonstrated in figure 2, the SLJ-specimen in tensile test machine is 

connected to the input analog amplifier chain as part of the electrical resistance change hardware. The 

output of the measurement hardware, applying a digitally generated sine signal. In the digital domain, the 

measurement platform also provides the algorithms necessary for signal processing, e.g. down-conversion of 

the acquired signal. Through the preliminary analysis, the measurements frequency is chosen to be fm = 5 kHz 

with an excitation voltage of ue = 1 V (signal generator in Fig. 2). Via the shunt resistance of rs = 50 Ω, a voltage 

reading is recorded which is proportional to the resistance of the sample.  

 
Fig. 2. Illustration of the electrical resistance change setup during the tensile test 
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Results and Discussion 
Morphology 

Prior to investigate the electromechanical behavior and crack extension, it is necessary to get a 

deeper understanding about the MWCNT distribution into the adhesive layer. Figure 3 shows the SEM 

pictures obtained from the fracture surface of MWCNT-epoxy nanocomposite containing 9 wt.% MWCNT.  

The MWCNTs distributed in epoxy matrix randomly which contributes in creation of conductive paths  

in epoxy adhesive. As reported by Ning Hu et al. [21], for a system made of conductive fillers inside an 

insulating matrix, tunneling effect between neighboring nanomaterials or clusters and contact mechanism 

between the clusters were the main conductivity mechanisms. According to SEM images, in MWCNT-

epoxy composite, tunneling effect between clusters or neighboring CNTs and contact resistance are the 

dominant mechanisms of conductivity.  

 
Fig. 3. Fracture surface images of MWCNT ‒ epoxy nanocomposite with 9 wt.% MWCNT with magnification of 5 kx 

(kx indicates a factor of 1000) 

Effect of Applied Frequency on Equivalent Parallel Resistance 
The equivalent parallel resistance of the adhesive joint changes significantly when measuring at 

different frequencies using the LCR meter. As depicted in table III, the values of RP, which is the equivalent 

parallel resistance, for 2.5 wt.% of MWCNT at different frequencies are significantly above 1 MΩ and  

the resistance changes between the lowest and highest frequencies is rc = 55.31 MΩ. For condition monito 

ing of the adhesive joint under shear load, it is necessary to select the proper frequency based on the 

resistance value of the adhesive layer so that the resistance change reading is adjusted accordingly. At 

higher frequencies, a pre-dominant capacitive effect can be observed (the same as occurs in insulators). This 

effect can be used to increase the signal strength of the measurement signal. Consequently, we applied a 

100 kHz excitation signal for specimens with lower concentration of CNT (2.5 and 6 wt.%) as well as 5 kHz 

for specimens with 9 wt.% CNT. We could thus reach measurement signals in the same range. 

The tensile test results of the SLJs with different contents of MWCNT are shown in figure 4. 

Obviously, the increase in the concentration of MWCNTs from 2.5 to 9 wt.% results in a further increase in 

the bond strength. 

Table III. Equivalent parallel resistance for a single lap adhesive joint at different frequencies 

Adhesive layer  

properties 

RP (MΩ)  

at f1=100 Hz 

RP (MΩ)  

at f2=1 kHz 

RP (MΩ)  

at f1=5 kHz 

RP (MΩ)  

at f3=10 kHz 

RP (MΩ)  

at f4=100 kHz 

rc (MΩ)  

between f1 and f4 

2.5 wt. % CNT-epoxy 59 E+00 14.8 E+00 11.04 E+00 7.38 E+00 3.69 E+00 55.31 E+00 

6 wt. % CNT-epoxy 0.970 E+00 0.412 E+00 0.402 E+00 0.367 E+00 0.150 E+00 0.82 E+00 

9 wt. % CNT-epoxy 1.576E-03 0.895E-03 0.763 E-03 0.634E-03 0.523E-03 1.053 E-03 
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Fig. 4. Force-displacement graphs of single lap adhesive joints with different concentration of CNT 

 

Effect of MWCNT Weight Percent on Sensing Properties 
The influence of different weight percent of MWCNT on the electrical resistance response of the SLJ 

together with the results of the tensile test are shown in figure 5. Since the experimental results were at the 

same ranges, and the result scatters were less than 5%, only the averages of the results are presented.  

In these diagrams, the axes giving the impedance changes are plotted at different scales as the impedance 

changes are at different ranges. The changes in resistance result from the promotion of shear deformation 

in the adhesive layer.  

As mentioned in section 3.2, a measurement frequency of fm = 100 kHz is applied for specimens with 

lower conductivity (2.5 and 6 wt.% of MWCNT) (Fig. 5a and 5b), and fm = 5 kHz was used for the specimens 

with higher conductivity (9 wt.%) (Figure 5c).  

For the specimens with 2.5 wt.% filler concentration, the starting point of a sharp increase of the 

relative resistance change (∆R/R) occurs at a shear displacement d = 0.35 mm, where at a shear load F of the 

80% maximum force Fmax, i.e. F/Fmax = 80%, ∆R/R increases by 20% (from 0% to 20%) (Figure 5a). A sharp 

increase in resistance occurs when a crack extension is initiated. A progressive increase in the slope of the 

resistance curve can not be observed at further extension of the crack (0.35 mm < d < 0.52 mm). 

Consequently, these specimens are only applicable for the evaluation of the large crack growth in the 

adhesive joint (Figure 5a). The resistance increase here may result from growing primary microcracks in the 

epoxy matrix which remain from the preparation. Such a phenomenon of resistance increase due to 

microcrack extension in composite structures is already described by Thostenson et al. [22].  

Figure 5b shows the electro-mechanical results of the specimens containing 6 wt.% of MWCNT in the 

adhesive layer. The sharp increase in the resistance curve due to primary microcracks occurs at d = 1.075 mm 

and F/Fmax = 95%. In the progression from the first cracking to the ultimate failure point, the resistance 

change increases continually. This results from the accumulation of the microcracks, here the change of 

∆R/R = 1 to 1.8% (see Fig. 5b). Thus, these specimens are more sensitive to a damage progression in 

adhesive layer.  

The electrical resistance response of the adhesive joint during shear loading for the specimen with  

9wt.% of MWCNT is shown in figure 5c. There is a quasi-linear increase in resistance change from initial 

loading until the large step increase of ∆R/R = 4% at d= 0.9 mm. There is also a further increase in ∆R/R for  

d > 0.9 mm, corresponding to the increase of damage accumulation. The changes in slope of ∆R/R is large 

relative to the other specimens (2.5 and 6wt.%). Therefore, it is possible to identify the nature and damage 

extension in adhesive layer using the specimens with 9 wt.% MWCNT. 
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(a) (b) 

 
(c) 

Fig. 5. Mechanical and electrical resistance response of SLJ with different weight percent of MWCNT: a) 2.5 wt.%,  

b) 6 wt.%, c) 9 wt.%. The arrows indicate the axis belonging to the respective curve.  

Note: the scaling on the right-hand axis and displacement below are not uniform throughout the illustrated results 

Effect of the Artificial Defects on the Sensitivity 
The nature and propagation of damage in the adhesive layer with embedded defects are assumed  

to be the same as in adhesive joints without embedded defects [18]. The electro-mechanical behavior and 

fracture surface of the adhesive joints with ad = 10 % embedded defect area, including circular and square 

defects in the adhesive layer, are shown in figures 6a and 6b, respectively. It can be seen from figure 6a  

that crack progression continued in the adhesive layer without an extension into the circular defect 

boundary. We may assume that, when there is a continuous crack growth in adhesive layer, the electrical 

resistance response increases quasi-linearly from the starting point of shear loading until ultimate fracture 

without constant segments in the resistance change. The results in figure 6b, let assume that there is no 

crack propagation in the adhesive layer, i.e. the crack extension occurs from the interface between the 

adhesive layer and metal adherent. Consequently, there is no quasi-linear behavior in the resistance change 

for the large part of the shear displacement (d < 0.63 mm). Furthermore, the electrical resistance response in 

figure 6b shows that accumulation of microcracks and damage progression in the specimens start at d = 

0.63 mm. The impedance result shown in figure 6a is very similar to the specimens without artificial defects 

(compare Fig. 5c). A possible explanation could be that in both of the specimens, the fracture behavior 

occurs in the adhesive layer. Another reason could be that the specimens have nonzero slope in the ∆R/R 

from the initial loading until ultimate fracture. 
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(a) (b) 

Fig. 6. Mechanical and electrical resistance response of SLJ including observed fracture surface with: a) 10% circular 

defect area and b) 10% square defect area. The arrows indicate the axis belonging to the respective curve.  

Note: the scaling on the right-hand axis and displacement below are not uniform throughout the illustrated results 

  
(a) (b) 

Fig. 7. Mechanical and electrical resistance response of SLJ including observed fracture surface with: a) 30% circular 

defect area and b) 30% square defect area. The arrows indicate the axis belonging to the respective curve.  

Note: the scaling on the right-hand axis and displacement below are not uniform throughout the illustrated results 

Impedance results for defects with 30 % of overlap area in circular and square shape, embedded  

in adhesive layer, are shown in figure 7a and 7b, respectively. In figure 7a, since the fracture is occurred 

from the interface between the adhesive and substrate, the total increase in ∆R/R showed a small value 

(∆R/R = 0.15%). From figure 7b we may assume that the cracks in the adhesive layer initiate at and reach 

from the defect boundary. In this situation the direction of the crack extension is changed and one sharp 

resistance change occurs at d = 0.23 mm (∆R/R = 100% to 220%). Consequently, we may conclude that  

the both shape and size of defect are influence on the electrical resistance response, and the change of ∆R/R 

is also related to the crack extension in adhesive layer. For a larger size of the defects with square shape,  

the crack extends from in adhesive and reach to defect boundary. Therefore, it showed the maximum 

amount in ∆R/R. 

Conclusions 
The presented study focuses on the condition monitoring capabilities of SLJs using conductive 

nanoadhesive. Conductive nanoadhesive was prepared with different filler contents of MWCNT (2.5, 6 and 

9 wt.%). The capability of the prepared MWCNT-epoxy SLJs as nanocomposite sensors for adhesive joints 
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was studied by determining their electrical impedance changes during loading. The best damage sensing 

capabilities of the adhesive joint were identified for specimens with 9 wt.%. The sensitivity of the 

conductive nanoadhesive was studied for defective adhesive joints with defects of 10 and 30% overlap area 

shapes. The results showed that damage progression in adhesive joints depends on the behavior of the 

crack growth in the adhesive layer and geometrical properties of the defect. Embedded larger sizes of 

defects with square shape indicated the most changes in electrical resistance by 220% because the crack has 

initiated and developed from the adhesive and its direction is changed from the defect boundary.  
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