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Abstract: The results of modelling of temperature fields, kinetics of deposition of layers of dissimilar metals 

and nature of structural transformations in formation of multi-layer structure of 17G1S and 30KhGS steels 

are presented. Computer modelling was performed using COMSOL Multiphysics software package.  

The work takes into account effect of temperature on thermal and physical parameters of steels. Two high-

strength structural steels, namely 17G1S and 30KhGS with different level of physical-mechanical properties 

and nature of initial microstructure (Fig. 2) were taken as a material for computer simulation. Thermal and 

mechanical properties of simulated alloys 17G1S and 30KhGS (Table I) were calculated by 

OpenCALPHAD program.   
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Introduction 
Almost all modern industry is based on casting and cutting technologies. At the beginning the 

metallurgical methods help to form a billet, which further is subjected to mechanical treatment (cutting, 

deformation, forging) and structure elements are developed. This is so called “subtraction technologies”. 

Over the last years a new complex of technologies, namely addition or additive technologies [1÷3], has 

received a large development. In contrast to casting and cutting technologies, additive manufacturing is 

based on addition of small portions of material. The products are created due to melting of metallic powder 

[4], solid wire or flux-cored wire [5,6] with concentrated power sources. The combination of an electric arc as 

heat source and wire as feedstock is referred to as WAAM and has been investigated for AM purposes since 

the 1990s [7]. 

Using a metallic wire in the additive process, on the one hand, allows increasing efficiency of 

metallurgical processes, provide higher energy-efficiency, rise material recovery, guarantee ecological safety, 

and, on the other hand, makes it possible to create the products of a shape, composition and structure, which 

cannot be in principle provided by traditional technologies. From point of view of formation of deposited 

metal structure, application of additive methods allows forming more uniform and dispersed polycrystalline 

or crystallographically perfect single-crystalline metal structure in comparison with traditional cast one (Fig. 

1). Additive methods are characterized with absen-ce of chemical inhomogeneity, dendrite and zone 

segregation that is related with small size of liquid pool and high solidification rate of deposited metal [8].  

In the recent time the material engineers face with the problems of development of the new 

technological processes providing the materials with high complex of properties at impact, wear and fatigue, 

subjected to increased cyclic and alternating loads. Functionally graded materials [9,10] are referred to such 

materials having unique set of mechanical, technological and special properties. The functionally-graded 

materials are a new class of materials, characterized by gradual or periodic change of mechanical properties  

and composition on material depth. Today, the functionally graded materials (FGM) are mostly produced 

from high-strength steels, aluminum and titanium alloys, as well as ceramics. 

Traditionally gradient structures are produced by means of application of special technologies  

of chemical-thermal surface treatment, surface hardening, layer-by-layer pressing with further vacuum 

sintering, electron-beam deposition, application of different coatings and deposits. The disadvantage of all these 

technologies is relatively small thickness of areas with gradient structures, their inhomogeneity and instability 
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of properties, presence of high internal stresses. If these disadvantages are eliminated, FGM can find 

application in military equipment, metal processing, mining and refining industry etc. In view of this it is 

reasonable to evaluate the possibility of application of additive technologies for development of new FGM.  

In order to increase efficiency of the process of product additive formation simultaneous application of  

a group of concentrated heat sources is possible at small portion feeding of metal compatible with a matrix.  

There can be a lot of such heat sources uniformly located over the perimeter of part being built up.  

  
(a) (b) 

Fig. 1. Microstructure of deposited layers of steel 09G2S, produced by different methods: a) traditional casting method; 

b) electric arc additive manufacturing. Magnification x500 

In this connection it is interesting to study mutual effect of heat sources on each other, which will allow 

formulating the requirements to minimum and maximum permissible distances between the sources and 

their powers. This is sufficiently difficult engineering and technological problem. Therefore, prior to 

performance of the real full-scale experiments it is reasonable to carry out computation experiments using  

the mathematical modeling methods. This work considers application of 3 heat sources.  

The aim of the work lied in analysis of the possibilities of application of additive forming technology of 

structures from functional materials with different complex of physical-mechanical properties.  

Material and investigation procedure 
The additive manufacturing technology allows effective and economy development and replacement 

of damaged parts of highly-loaded assemblies directly in place. Following from this, two high-strength 

structural steels, namely 17G1S and 30KhGS with different level of physical-mechanical properties and nature  

of initial microstructure (Fig. 2) were taken as a material for computer simulation.   

Structural low-alloy steel 17G1S is used in welded structures in shipbuilding, machine building, main 

gas- and oil pipelines, in welded joints operating under high pressure at temperature from -40 to +475 C. 

Structure of steel 17G1S is ferrite-pearlite. Chemical composition of steel 17G1S (wt.%) is the following 0.17% 

С, 1.52% Mn, 0.47 Si, 0.02% S, 0.025% P. Mechanical properties are the next ones, namely yield strength 343 

MPa, ultimate strength 490 MPa; relative elongation 20%. Temperatures of the critical points make Ас1=745 

°С, Ас3=870 °С, Аr1=680 °С, Ar3=790 °С.  

Structural alloy steel 30KhGS is used in the critical welded structures operating at alternating loads, 

fasteners operating at low temperatures, gear wheels, flanges, casing bodies, blades of compressor machines. 

Structure of 30KhGS steel is bainite-martensite. Chemical composition of 30KhGS steel (wt.%) is the following 

0.32% С, 1.1% Mn, 1.05% Cr, <0.3% Ni, <0.3% Cu, 0,02% S, 0.025% P. Mechanical properties are the next ones, 

namely yield strength 580 MPa, ultimate strength 686 MPa, relative elongation 11%. Temperatures of the 

critical points make Ас1=760 °С, Ас3=830 °С, Аr1=670 °С, Ar3=705 °С, Mн=352 °С. 

Microstructure of steels 17G1S and 30KhGS in as-delivery condition is presented in figure 2. Content of 

ferrite in steel 17G1S made 52%, pearlite 48% and that in steel 30KhGS was 60% for bainite and 40% for 

martensite. To carry out computer simulation of the additive manufacturing process it is necessary to take 

into account dependence of the physical-metallurgical properties of steels being simulated on heating 

temperature. In addition to tradition methods used to receive the properties of materials in course of 

experimental investigations, the most perspective now is application of free or commercial software for 

modelling  

of a wide spectrum of properties of multi-component steels and alloys based on CALPHAD method [11].  
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(a) (b) 

Fig. 2. Microstructure of a) 17G1S and b) 30KhGS steel specimens in as-delivered condition. x200 

FactStage, MTDATA, Thermo-Calc and OpenCALPHAD commercial programs are referred to such 

types of software first of all. Thermal and mechanical properties of simulated alloys 17G1S and 30KhGS 

(Table I) were calculated by OpenCALPHAD program. Multidisciplinary package COMSOL Multiphysics 

was used for computer modelling [12]. It allows joining the problems of diffusion, heat- and mass transfer, 

hydrodynamics and mechanics of deformable solid body in one interconnected problem. The following 

physical interfaces, namely heat-transfer module, diffusion module, structural mechanics module and module 

of differential equation solution in partial derivatives were used in the process of modelling.  

Geometry of structure wall consists of the alternating layers of material from steel 17G1S and 30KhGS 

of 1.0 mm thickness, 6.0 mm width and 280 mm length (Fig. 3a). Number of deposited layers was determined 

from the condition of maximum approximation to stationary temperature mode of deposition application. 

Based on the results of previous investigations [13] the number of layers makes from 6 to 8 layers. Alternating 

deposition of 10 steel layers was modeled in the work.  

  
(a)  (b) 

Fig. 3. a) Geometry of additive forming b) and computational mesh (for steel 17G1S, 30KhGS) 

Following the results of experiment, it was accepted that in the initial moment of time the deposited 

material is in a solid-liquid state between liquidus and solidus temperatures for these steels that allows 

disregard a liquid phase during formation of layers in the calculations. The layers were one by one deposited 

on the substrate with 10 seconds interval.  

Three arc heat sources were simultaneously used in the work in order to increase efficiency of the 

additive process, provide homogeneity of temperature distribution, prevent early cooling of the deposited 

layer before deposition of further layer due to their small thickness (1 mm), and develop the possibility  

to regulate composition of part being deposited. The idea of simultaneous application of several arc heating 

sources is based on the experience of application of multi-arc submerged-arc welding, at which welding wires 

of different composition are set on the separate arc that allows regulating temperature, content of alloying 

elements and weld metal microstructure with high accuracy [14]. The necessary weld composition  

is reached by means of variation of number of arcs with welding wire of that or another alloying system  

and different speed of its feeding on separate arcs. Such an approach provides more favorable structure state 
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of the weld metal (formation of acicular ferrite) and, as a result, higher mechanical properties of welded joint. 

A model of elastic-plastic material was considered in the calculations. Stresses and deformations in the model 

appear as a result of development of sag phenomena due to material volume reduction in cooling.  

Table I. Effect of heating temperature on thermal-physical properties of steels 17G1S and 30KhGS 

Steel 17G1S Steel 30KhGS 

Physical properties Thermal properties  Physical properties Thermal properties  
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25 7.80 0.00 32.65 0.45 25 7.78 0.00 22.25 0.46 

100 7.78 0.10 34.54 0.48 100 7.75 0.10 24.44 0.49 

200 7.75 0.23 36.11 0.52 200 7.72 0.23 27.11 0.53 

300 7.72 0.37 36.51 0.57 300 7.69 0.38 29.10 0.57 

400 7.68 0.53 35.82 0.62 400 7.66 0.53 30.11 0.63 

500 7.65 0.68 34.38 0.70 500 7.62 0.69 30.12 0.70 

600 7.61 0.85 32.60 0.80 600 7.58 0.86 29.30 0.83 

700 7.57 1.02 30.94 0.96 700 7.54 1.03 28.23 1.01 

800 7.59 0.94 27.12 0.87 800 7.56 0.94 25.11 0.62 

900 7.55 1.09 27.53 0.61 900 7.50 1.18 26.24 0.64 

1000 7.50 1.34 28.71 0.63 1000 7.44 1.41 27.38 0.63 

1100 7.45 1.59 29.89 0.64 1100 7.39 1.65 28.53 0.65 

1200 7.39 1.84 31.07 0.66 1200 7.34 1.90 29.68 0.66 

1300 7.34 2.10 32.25 0.68 1300 7.28 2.16 30.83 0.68 

1400 7.28 2.36 33.43 0.69 1400 7.22 2.48 31.96 1.44 

Owing to the fact that the calculation area continuously increased in size because of constant addition 

of the new wire elements, rearrangement of the computational mesh took place at every modelling step.  

In the process of calculation, the number of mesh elements has risen from 250.000 to 630.000 elements. 

Method adaptive mesh was used in the calculation, size of cell in which does not exceed 0.1 mm in the 

deposited layer and 1 mm in the substrate (Fig. 3b). Used model and corresponding to it mathematical 

equations are given in works [13,15]. 3D non-stationary heat conduction equation (1) was solved for 

numerical analysis of kinetics of temperature field change in the deposited product with time:  

 ( )p

T
C u T k T T

t


 
+  =   

 
                                                    (1) 

ρСр is the specific heat capacity and k is the heat conduction coefficient of the material.  

The boundary conditions, necessary for solution of equation (1) are determined by a balance of heat 

input and heat sink from the surface of part being deposited. Thus, the heat sink in the contact area of part 

being deposited with the substrate can be described by Newton law, whereas thermal radiation on the free 

surface is regulated by Stefan-Boltzmann law.  

The boundary conditions for solution of heat conduction equation (1) have the following form:  
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where:  

n is the normal to the surface,  

h = 10 (W/m2K) is the coefficient of convective heat conductivity,  

ε = 0.8 is the material emissivity factor,  
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σo is the Stephan-Boltzmann constant (5.6704·10-8 J·s-1·m-2·К-4),  

Text = 293 K is the temperature of ambient environment,  

qarc is the density of heat flow developed by arc heat source,  

qwire is the amount of heat, which is introduced by molten wire.  

A model of joint transfer of energy from two simultaneously acting heat sources, namely arc source and 

molten wire, was used in the work. Distribution of density of a heat flow from moving surface arc source qarc 

(x, y, t) was set by a model of ellipsoidal type:  
2 2

max 0 0( , , ) exp ( * ) ( )arc x a yq x y t q K x x v t K y y = − − − − −                               (3) 

where:  

x, y are the local coordinates of heat source,  

x0, y0 are the initial coordinates of the source,  

qmax = ηUa Iw is the source power,  

η is the performance factor (0.9…0.95) of source;  

Ua is the arc voltage;  

Iw is the arc current;  

Kx and Ky are the coefficients of concentration of specific heat source,  

va is the velocity of arc source along axis Х, t is the time.  

Distance between the neighbor arc sources made 100 mm. 

Distribution of density of the heat flow from molten wire qwire (x, y,t) was set by movement of an edge 

of forming layer with va speed having constant temperature equal to Twire = 1800 K.  

In the presented work this model was expanded by diffusion equation due to high possibility of 

appearance of the diffusion processes between deposited layers of different composition.  For this process  

a diffusion equation (Fick’s law) has the following form: 

(4) 

 

where:  

сi is the concentration of ith element (i=C, Si, Mn) in solid solution of iron at the moment of time t [s];  

Di is the coefficient of diffusion of ith element [cm2/s];  

T is the temperature in a random point of deposition, which is determined based on a solution of temperature 

problem;  

function of volume source fi(ci) = 0, due to the fact that no new phases are formed in the deposited bead since 

content of the elements in a solid solution does not exceed their solubility in iron.  

The initial conditions for this process is an initial concentration 𝑐𝑖
𝑜1 of (C, Si, Mn) elements in 17G1S steel 

and 𝑐𝑖
𝑜2 in steel 30KhGS. For equation (4) the boundary conditions of deposited layer are periodically changed 

depending on deposited metal composition, i.e. 17G1S (𝑐𝑖
𝑜1)  or 30KhGS (𝑐𝑖

𝑜2).    

It is known fact that the diffusion coefficient Di depends on temperature and composition of metal in 

the considered zone as well as on structure state of metal, in which diffusion processes take place.  

The equations for diffusion coefficients in austenite or ferrite are significantly different. Lower values of the 

diffusion coefficients in BCC lattice (-Fe) in comparison with FCC lattice (-Fe) are related with its higher 

compactness. The results presented in work [16] were used for calculation of C, Si and Mn diffusion 

coefficients in -iron. In calculations ( )iD T
 diffusion coefficients can be presented in form of:  

0 exp i
i i

Q
D (T) D

RT


   

=  − 
 

                                                                  (5) 

where: 

𝐷𝑖0
𝛾  is the constant, value of which depends on carbon content [cm2/s] (Table II);  

𝑄𝑖
𝛾

 
is the energy activation of diffusion [J/mole];   

R is the universal gas constant 8.31 [J/(mole·К)];  

T is the temperature [K].  

Well-known empirical dependence of C.A. Wert, received as a result of generalization of large number 

of experimental data, was used for calculation of coefficients of carbon diffusion in -iron.  

6 284300
2*10 exp [ / ]CD (T) м с

RT

 −  
= − 

 
                                                 (6) 

The calculations made on dependence (6) give the values of carbon diffusion coefficient at 800 °С  

– 1.56·10-6 [cm2/s], at 600 °С – 1.80·10-7 [cm2/s], at 200 °С – 9.70·10-12 [cm2/s]. 
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Table II. Values of diffusion coefficients of carbon, manganese and silicon in -iron [16]  

Element 
Carbon  

content [%] 

𝑫𝒊

𝒚(𝑻)107(cm2/s) at Т [°С] 𝑫𝒊𝟎
𝒚 (𝑻 × 𝟏𝟎𝟕) 

[cm2/s] 

𝑸𝒊
𝒚
 

[J/mole] 1000 1100 1200 

С 

0.2 2.45 6.06 13.10 0.056 

128100 0.4 3.36 7.95 17.30 0.076 

0.7 4.11 10.50 23.10 0.096 

Si 

0.2 2.08 5.24 11.50 0.06 

134000 0.4 2.76 7.00 15.30 0.08 

0.7 3.80 9.58 21.00 0.11 

Mn 

0.2 2.62 6.47 14.50 0.07 

132400 0.4 3.30 8.10 18.20 0.08 

0.7 4.20 10.40 23.20 0.11 

Solution of the differential equations was carried out on finite element method (FEM) by means  

of building of a non-uniform adaptive grid and setting in each grid cell of Lagrange interpolation polynomial 

of the second order. Since deposit geometry has a symmetric form, then the calculation was carried  

for half of the part in order to decrease calculation resources. Amount structural constituents, forming in the 

process of polymorphous transformation was calculated by:  
max

8/5( ) ( ) ( )j j jV T V t f T=                                                                   (7) 

where:  

𝑉𝑗(𝑇) is the portion of j-th phase (ferrite, bainite, martensite);  

𝑉𝑗
𝑚𝑎𝑥(∆)𝑡8/5 is the maximum portion of j-th phase;  

∆8/5 is the cooling time in a temperature interval 800÷500 °С;  

𝑓𝑖(𝑇) 
is the function depending on temperature [14]. 

A dependence of maximum phase fraction of 𝑉𝑗
𝑚𝑎𝑥(∆)𝑡8/5 from cooling rate 𝑊8/5 for investigated steels 

(Fig. 4) was determined experimentally by Gleeble 3800 system.  

  

(a) (b) 

Fig. 4. Effect of cooling rates 𝑊8/5 on formation of structural constituents 𝑉𝑗
𝑚𝑎𝑥(∆)𝑡8/5 in steels: a) 17G1S, b) 30KhGS  

(1 – ferrite, 2 – bainite, 3 – martensite, 4 – pearlite)  

Modelling results  
By results of solution of the heat problem a spatial distribution of the temperature fields was built  

in the different time moments. 

The work analyses the effect of heat input from the arc heat source of 1 and 5 kW power on the 

temperature field of the deposited layers and kinetics of structure formation. Selection of power of the arc 

heat source was determined by typical characteristics of electric arc welding process of high-strength low-

alloy steels. Table III presents the values of technological parameters arc deposition used in the work.  

Preliminary calculations showed that deposition of liquid metal of molten wire on “cold” substrate with 

+20 C temperature provokes appearance of significant stresses 300÷500 MPa at the boundary between the 

substrate and deposited bead, which can result in formation of cracks and tear of deposited layers.  

Due to this, in course of calculations passing of the 1st arc was not accompanied by deposition of liquid metal 
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from wire, and the arc in “idle” run only warmed up the substrate. Temperature of the substrate  

to the moment of arrival of the 2nd arc, at which liquid metal of molten wire was already deposited, made 

200÷250 C. Such an approach allowed reducing stresses on substrate-bead boundary to 50÷70 MPa. To get 

such an effect in single-arc deposition is virtually impossible due to the fact that the substrate is almost 

completely cooled to the initial temperature in the moment of wire deposition. Small time (10 s) between arc 

passing in the proposed model prevents substrate complete cooling.  

Table III. Technological parameters of arc deposition 

Parameter Values 

Arc power, kW 1…5 

Thickness of plate, mm 10 

Thickness of deposited layer, mm 1 

Deposit width, mm 4 

Deposit length, mm 300 

Rate of arc movement, mm/s 10 

Rate of wire feed, mm/s 10 

Distance between the sources, mm 100 

Number of deposited layers 10 

Results of modeling of temperature fields in deposition of 10 layers of dissimilar materials are given in 

figure 5. Analysis of interaction of the temperature fields in the process of deposition allows limiting  

a time of passing of neighbor heat sources. The calculations show that this time cannot be less than 3÷5 s due 

to the fact that otherwise overlapping of the liquid metal pools from neighbor sources, increase of pool 

overheating, its spread on the deposit wall and formation of defects will take place. On the other hand, time 

between the neighbor sources cannot be higher than 25÷30 s due to the fact that otherwise deposited wall 

will completely cool down and martensite structure will be formed. This results in rise of stresses on the 

boundary between the layers and possible defect formation.  

  

  
(a) (b) 

  
(c) (d) 

Fig. 5. Modelling of additive process in time: a) 25 s; b) 50 s; c) 106 s; d) 145 s 

Analysis of received results shows almost uniform distribution of temperature in the deposited layers 

and substrate. Increase of power of heat source from 1 to 5 kW results in rise of heat affected zone from 1.5 to 3 
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cm, respectively. Heating-up of the substrate in process of deposition (Fig. 6) rises and more expressed 

change of structure-phase composition of the whole part is observed.  

Figure 6 shows calculation distribution of substrate temperature on height. Obtained results show that 

the highest temperature of substrate makes 1220 C when using the arc of 1 kW power, and 1800 C at arc 

power 5 kW. Thus, application of 5 kW arc provokes submelting of the substrate, whereas it does not happen 

using 1 kW power arc. Analysis of the temperature isotherms (Fig. 6b) shows that the areas located at a 

distance larger than 0.5 cm from deposit surface are not melted. The maximum temperatures at each 

disposition cycle are gradually reduced, however it is non-uniform at low arc power 1 kW. This circumstance 

shall result in formation of inhomogeneity in the deposit structure.  

 
 

 

      (a)     (b) 

Fig. 6. Effect of heat input on change of substrate temperature on height (1 – 0.1 mm; 2 – 0.5 mm; 3 – 0.9 mm) in the 

process of layers deposition: a) 1 kW and b) 5 kW  

Investigation of structure-phase state of the deposit is presented in figure 7. The results of modelling 

show that increase of arc heat input in deposition results in noticeable change of deposit’s structure state. 

Thus, use of low power arc provokes mainly formation of ferrite-bainite structure. After deposition is 

completed (Fig. 7a) portion of bainite makes 71%, ferrite 28%, martensite  1%. Bainite-martensite structure 

is formed at high arc power 5 kW. Portion of bainite in the deposit reduces to 49%, that of martensite rises to 

42% and ferrite drops to 9% (Fig. 7 b). 

 
 

 
 

(a) (b) 

Fig. 7. Effect of arc heat input on phase change in deposit in time: a) 1 kW and b) 5 kW; 1 – ferrite, 2 – bainite, 3 – 

martensite, 4 – pearlite 

Change of deposit structure is related with difference in part cooling rates. Though cooling rate of  

the deposit is cyclically changed (Fig. 6) in deposition with arc of 1 kW, nevertheless on average it makes 

8÷10 C/s. In deposition with arc of 5 kW power cooling rate obviously increases and makes 30÷50 C/s.  

Observed “dips” in change of structure state of the deposit (Fig. 7) are related with the increase of deposit’s 

temperature above → transformation temperature. This results in reverse transformation of the initial 

structure in austenite. Heating of lower layers of the deposit above Ac3 temperature is stopped in 25 s from 

melting start at low 1 kW arc power. Whereas, at high 5 kW arc power this process is terminated only after  

45 s. This results in more uniform distribution of structural constituents on thickness of the deposit at low 

arc power and, respectively, more inhomogeneous structure at high arc power.  
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Analysis of received results show that rise of deposit thickness provokes change of structure from  

ferrite-pearlite (48% of ferrite, 52% of pearlite) into ferrite-bainite (5% of ferrite, 95% of bainite). Increase of  

portion of bainite constituent in the deposit is related with formation of relatively high cooling rates  

(10÷15 C/s) at quick cooling of thin layers of the deposit (1 mm). Increase of arc heat input leads to overheating 

of liquid metal, rise of maximum pool temperature to 1750÷1850 C, rise of cooling rate from 15  

to 25 C/s and, as a result, build-up of portion of martensite in the deposited layer structure.  

Calculated changes of C, Si and Mn content on thickness of the deposited layers is presented in figu- 

re 8. The calculations, carried on the proposed model, show that periodic changes in structure, composition 

and properties of the material take place in the deposited bead. Long-term staying of the deposited metal 

above Ac1 temperature in the austenite area results in noticeable redistribution of carbon on bead thickness. 

 
 

 

(a) (b) 

           
 

 

(c) (d) 

Fig. 8. Distribution of the content of elements in the additive deposited layers by thickness: a) 3D view carbon 

distribution, b) carbon, c) silicon, d) manganese; ••••• ‒ initial content, - ‒ content after 150 s 

Higher carbon diffusion coefficient in ferrite area and increased time of keeping the deposited layers in  

the austenite area lead to more uniform distribution of carbon on deposit thickness (Fig. 8b). Reduced 

diffusion mobility of silicon (Fig. 8c), and, in particular, of manganese (Fig. 8d) leads to preservation of periodic 

change of content of these elements in the deposited bead. Difference in content of elements in the layers 

reduces with increase of thickness of deposited layers. 

It can be concluded based on the received results that increase of duration of additive process of layers 

deposition will promote homogenization of composition of part being formed. Rise of arc power results  

in intensification of process of the deposit homogenization.  

Conclusions  
1. Application of additive process to deposit formation allows developing artificial periodic structures 

having controlled anisotropy of properties on structure, composition, thermal-physical properties.  

2. During deposition in additive manufacturing it is reasonable to use preheating of the substrate by means 

of “idle” run of the arc. Application of preheating allows significantly reducing stresses on substrate – 

bead boundary to 50÷70 MPa.  

3. Time between the passes of the initial point by neighbor arc heat sources shall be kept in 5÷30 s range. 

It can be regulated by a distance between heat sources and wire feed rate. 

4. Increasing the arc power results in a change in the structure deposition from the ferrite-bainite to bainite-

martensite, in which the bainite portion in the deposition is 49%, martensite 42%, and ferrite 9%. 
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