Wymiar fraktalny gradientowej warstwy pośredniej Al₂O₃–Cr

The fractal dimension of Al₂O₃–Cr graded intermediate layers

Streszczenie

W artykule przedstawiono wyniki pomiarów wymiaru fraktalnego struktury gradientowej warstwy pośredniej w złączu Al₂O₃–H25T. Dla analizowanych struktur warstwy pośredniej określono zawartość Al₂O₃ oraz wymiar fraktalny liniowy, wykorzystując metodę linii pomiarowej (LCD), będącą modyfikacją metody *box counting dimension* (BCD).

Abstract

The paper presents the results of AI_2O_3 -Cr FGM intermediate layer fractal analysis. The intermediate layers were used to obtain the AI_2O_3 -H25T joints. The selected cross-section structures of AI_2O_3 -Cr intermediate layer have been the subject of investigation. The computer image processing techniques have been applied to prepare binary images of structures for AI_2O_3 distribution and fractal dimension measurements. The line counting dimension algorithm, based on the box counting dimension method (BCD), has been used to obtain the fractal dimension of analyzed structures.

Wstęp

W złączach ceramiczno – metalowych istotnym problemem są naprężenia własne generowane w czasie procesu spajania. Ich główną przyczyną są znaczne różnice we właściwościach łączonych materiałów, takich jak współczynnik rozszerzalności liniowej i moduł sprężystości podłużnej. W celu uniknięcia zbyt wysokiego poziomu naprężeń w złączu i ich niekorzystnego rozkładu stosuje się różne konstrukcyjne i technologiczne sposoby, m.in. zmiany konstrukcyjne w złączu (zmiana wymiarów i kształtu elementów łączonych) oraz przekładki kompensacyjne o określonych właściwościach. Jednym z rodzajów takich przekładek są przekładki wielowarstwowe z gradientem właściwości (FGM).

W artykule zamieszczono wyniki pomiarów wymiaru fraktalnego struktury poszczególnych warstw składających się na materiał gradientowy, stanowiący warstwę pośrednią w złączu ceramiki korundowej Al₂O₃ ze stalą H25T.

Dr inż. Jarosław Grześ – Politechnika Warszawska.

Przedmiot i metodyka badań

Przedmiot badań stanowiła warstwa pośrednia w złączu ceramiki korundowej Al_2O_3 ze stalą H25T, składająca się z mieszaniny proszku Al_2O_3 (wielkość ziarna 80 µm) i Cr (wielkość ziarna 50 µm) o zmiennym składzie (rys. 1). Założony udział objętościowy

Rys. 1. Z_{4} zcze $Al_{2}O_{3} - H25T$ z warstwą pośrednią FGM **Fig. 1.** $Al_{2}O_{3} - H25T$ joint with FGM intermediate layer

26

Rys. 2. Warstwa pośrednia $AI_2O_3 - Cr$ **Fig. 2.** $AI_2O_3 - Cr$ intermediate layer

w poszczególnych obszarach warstwy pośredniej (rys. 2) wynosił:

obszar I	–25% Al ₂ O ₃ / 75% Cr
obszar II	–50% Al ₂ O ₃ / 50% Cr
obszar III	–75% Al, O, / 25% Cr
Szozogółowa	, opie wytworzopia b

Szczegółowy opis wytworzenia badanej warstwy oraz parametry spajania złącza przedstawiono w [1].

Pomiar wymiaru fraktalnego wykonano na wybranych obrazach pochodzących z poszczególnych obszarów warstwy pośredniej. Obrazy cyfrowe struktur o wymiarach 512 x 512 pikseli poddano obróbce komputerowej, wykorzystując programy Image Tools i ImageJ. Zamieszczone w pracy wyniki pomiaru wymiaru fraktalnego oparto na liniowej modyfikacji fraktalnego wymiaru pudełkowego (BCD - box counting dimension), umożliwiającej dokładne skanowanie analizowanej struktury. Zastosowana metoda określania wymiaru fraktalnego została przedstawiona w [2]. Obliczenia wartości wymiaru fraktalnego przeprowadzono, wykorzystując program Skaner Wymiaru Fraktalnego (SWF), opracowany w Zakładzie Inżynierii Spajania Politechniki Warszawskiej. W ramach analizy obrazu oraz analizy fraktalnej określono zawartość Al₂O₃ w analizowanych strukturach oraz wymiar fraktalny liniowy D, w dwóch prostopadłych do siebie kierunkach skanowania: poziomym – X i pionowym – Y.

Struktura warstwy pośredniej i jej obrazy binarne

W celu określenia wymiaru fraktalnego konieczne było przeprowadzenie obróbki komputerowej obrazów struktur, w wyniku której otrzymano obrazy binarne. Na rysunku 3 przedstawiono obrazy poddanych analizie struktur warstwy pośredniej złącza $AI_2O_3 - H25T$ oraz ich postać binarną. Wykonane pomiary wymiaru fraktalnego dotyczą AI_2O_3 . Z tego względu oraz wymagań stawianych przez program SWF, na przedstawionych obrazach binarnych ceramika korundowa AI_2O_3 reprezentowana jest przez czarne piksele, a chrom przez białe.

Rys. 3. Obrazy analizowanych struktur warstwy pośredniej złącza $AI_2O_3 - H25T$ i ich wersje binarne: a) struktura z obszaru I, b) struktura z obszaru II, c) struktura z obszaru III

Fig. 3. Analysed structures of intermediate layer in AI_2O_3 -H25T joint with binary view: a) structure of area I, b) structure of area II, c) structure of area III

Rozkład Al₂O₃ na przekrojach poprzecznych warstwy pośredniej

Wykorzystując komputerową analizę obrazu (program Image Tools) oraz obrazy binarne struktur, określono zawartość Al₂O₃. Wyniki pomiarów przedstawiono w tablicy I.

W celu rozszerzenia przedstawionych w tablicy l wyników pomiarów wykonano również pomiary zawartości Al_2O_3 wzdłuż każdej linii pomiarowej skanującej analizowany obraz w poziomie (kierunek skanowania – X). Wykresy zmian zawartości Al_2O_3 dla obrazów binarnych analizowanych struktur przedstawiono na rysunku 4.

Tablica I. Zawartość Al_2O_3 w badanych strukturach warstwy pośredniej **Table I.** Al_2O_3 content in analysed structures of intermediate layer

Obszar warstwy	l – 25% Al ₂ O ₃ /	$\frac{{\rm II}-50\%~{\rm Al_2O_3}{\rm /}}{50\%~{\rm Cr}}$	III – 75% Al ₂ O ₃ /
pośredniej	75% Cr		25% Cr
Zawartość Al ₂ O ₃ , %	24,76	49,57	77,29

Rys. 4. Zmiany zawartości Al_2O_3 w analizowanych obszarach warstwy pośredniej złącza $Al_2O_3 - H25T$

Fig. 4. Al_2O_3 content changes in analysed areas of intermediate layer $\,$ a) in Al_2O_3 – H25T joint

Wymiar fraktalny badanych struktur

Wymiar fraktalny określono w dwóch prostopadłych kierunkach, skanując obrazy binarne w poziomie i pionie. W tablicy II podano zbiorcze wyniki określania wymiaru fraktalnego dla analizowanych struktur warstwy pośredniej, a na rysunku 5 przedstawiono wykresy

Rys. 5. Wymiar fraktalny D_1 analizowanych struktur warstwy pośredniej złącza Al₂ O_3 – H25T: a) kierunek skanowania X, b) kierunek skanowania Y

Fig. 5. The fractal dimension (D₁) of analysed structures of intermediate layer in AI_2O_3 – H25T joint: a) scanning direction X, b) scanning direction Y

Tablica II. Wymiar fraktalny analizowanych obszarów Table II. The fractal dimension of analysed padding welds

Obszar warstwy pośredniej	Wymiar fraktalny D _{I min} / D _{I śred} / D _{I maks}	Wymiar fraktalny D _{I min} / D _{I śred} / D _{I maks}
	Zakres wymiaru fraktalnego D _{I maks} – D _{I min} (skanowanie w poziomie – kierunek X	Zakres wymiaru fraktalnego D _{I maks} – D _{I min} (skanowanie w pionie – kierunek Y)
1	0,2061 / 0,7082 / 0,8564	0,5788/ 0,6995 / 0,8153
	0,6503	0,2365
II ···	0,6480 / 0,8485 / 0,9415	0,7784 / 0,8562 / 0,9155
	0,2935	0,1371
Ш	0,8935 / 0,9521 / 0,9825	0,9288 / 0,9547 / 0,9782
	0,0890	0,0494

Rys. 6. Anizotropia wymiaru fraktalnego $(D_{IX} - D_{IY})$ badanych obszarrów: a) obszar I, b) obszar II, c) obszar III

Fig. 6. The fractal dimension $(D_{IX} - D_{IY})$ anisotropy of analysed areas: a) area I, b) area II, c) area III

 $\mbox{Rys. 7. Zależność wymiaru fraktalnego <math display="inline">\rm D_1$ od zawartości $\rm Al_2O_3$ w strukturze

Fig. 7. The function of fractal dimension D₁ on Al₂O₃ content in structure

Podsumowanie

Przedstawione wyniki pomiarów zawartości Al₂O₃ w poszczególnych obszarach struktury warstwy pośredniej (tabl. I) wykazały zgodność z założonym udziałem objętościowymi i potwierdziły prawidłowość przyjętej technologii jej wytwarzania. Pomiary rozkładu Al₂O₃ wzdłuż każdej linii pomiarowej, wykonane dla kierunku skanowania X, wykazały lokalne różnice udziału Al₂O₃, bezpośrednio związane z jego rozkładem powierzchniowym w badanym obszarze (rys. 4). Największe różnice występują w obszarze I, a najmniejsze w obszarze III gradientowej warstwy pośredniej.

Pomiary wymiaru fraktalnego wykazały, iż najniższymi wartościami wymiaru fraktalnego i największym zakresem jego zmienności charakteryzował się obszar I, natomiast wartościami najwyższymi i najmniejszym zakresem zmian obszar III (tabl. II, obrazujące zmiany wymiaru fraktalnego dla badanych struktur. W celu zwiększenia czytelności wykresów, na rysunku 5a pominięto wartości wymiaru fraktalnego mniejsze od 0,5.

Uzupełnieniem wykonanych pomiarów są wykresy przedstawiające różnice wartości wymiarów fraktalnych $D_{IX} - D_{IY}$ (anizotropię wymiaru fraktalnego dla kierunków skanowania X i Y) w poszczególnych punktach obrazów binarnych badanych obszarów warstwy pośredniej, przedstawione na rysunku 6.

Z zasady określania wymiaru fraktalnego wynika, że im większy udział analizowanego składnika w strukturze, tym większa wartość wymiaru fraktalnego. Na rysunku 7 przedstawiono zależność wymiaru fraktalnego od zawartości Al₂O₃ w strukturze warstwy pośredniej.

rys. 5). Jednocześnie stwierdzono większe zakresy zmian wymiaru fraktalnego dla kierunku skanowania X (maks. 0,6503 dla obszaru I) niż dla kierunku skanowania Y (maks. 0,2365 dla obszaru I). Różnice między wartościami średnimi wymiaru fraktalnego obliczonymi dla prostopadłych kierunków skanowania i odpowiadających sobie obszarów są stosunkowo niewielkie (poniżej 0,009). Zakres zmienności wymiaru ulega zawężeniu wraz ze wzrostem udziału Al₂O₂ w badanej strukturze.

Najmniejszą anizotropię wymiaru fraktalnego stwierdzono dla obszaru III – różnica $D_{IX} - D_{IY}$ wartości wymiaru fraktalnego nie przekroczyła 0,0846 (dla obszarów I i II odpowiednio 0,6092 i 0,2674).

Analiza otrzymanych wyników pomiarów pozwoliła na określenie zależności między wymiarem fraktalnym D, a zawartością Al₂O₃.

Literatura

- Grześ J., Pietrzak K.: Spajanie materiałów z wykorzystaniem nanokompozytowych warstw z gradientem składu. Archiwum Nauki o Materiałach, t. 25, nr 4/2003, s. 643-655.
- [2] Grześ J.: Wymiar fraktalny wybranych struktur złącza spawanego ze stali H17, Prace Naukowe – Mechanika z. 229, WPW, Warszawa 2009.

29