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Abstract: The article describes the effect of alloyed additives in base material and filler metal on 

intergranular corrosion. Steel 1.2 mm thick, titanium-stabilized ferritic stainless steel and titanium and 

niobium-stabilized ferritic stainless steel have been surfacing method MAG (135). The specimens received 

was subjected to macro and microscopic tests, hardness tests and the intergranular corrosion resistance 

test. The study showed a higher corrosion resistance of niobium and titanium stabilized steel from 

titanium-stabilized steel. In addition, a ferritic fine-grain structure was found in the padding axis made 

with the use of filler metal with titanium and niobium microadditives. 
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Introduction 
Steel grades certified as high-alloy stainless are widely used in the industry, among others due to their 

properties, especially corrosion resistance. However, the advantages of corrosion resistance significantly 

affect the price of the basic material. The high price of stainless steels is dictated, among others using 

expensive alloy components such as chromium and nickel for their production. Stainless steel, in order to be 

resistant to corrosion, should contain more than 12.5% of chromium in its composition. Typical stainless 

steels are austenitic steels having additionally nickel (more than 8%) and molybdenum. Austenitic steels have 

very good corrosion resistance (including Cr-Ni-Mo, with a reduced carbon content, stabilized with micro 

additives), susceptibility to plastic machining and relatively good weldability. The desire to reduce the cost 

of production of elements has led to a wider use of stainless ferritic steels, however, in manufacturing 

processes requiring relatively high heating of this type of steel, it is very likely that their structure changes due 

to grain growth and the formation of chromium carbides at the grain boundaries, which in turn may lead to 

intergranular corrosion. Ferritic steels are widely used in the automotive industry, where such material 

allows the element to be made without additional corrosion protection processes, along with the predicted 

longer working time in the road environment. The low thickness of such materials allows welding without 

bevelling, using a minimum gap, resulting in full penetration in the joint, with minimal edge preparation 

cost. Lowering costs, which is the material configuration, the native material-binder, requires checking how 

specific materials behave during the corrosive environment after welding [1÷14]. 

Research 
The aim of the work was to investigate the effect of alloy additives contained in ferritic stainless steels 

and a binder dedicated to their surfacing, on the course of intergranular corrosion in the padding weld  

and in the Heat Affected Zone (HAZ). The materials used for the research were ferritic stainless steel grades 

X2CrTiNb18 (AISI 441) and X2CrTi12 (AISI 409) and additional materials in the form of solid wires stabilized: 

niobium (X3CrNb17; AISI 430Nb) and titanium and niobium (X2CrTiNb18; AISI 441). Figure 1 shows the 

microstructures of native materials, and their chemical composition in Table I (the test was performed with a 

spark spectrometer).  

In the case of X2CrTiNb18 steel, the structure of the native material is a fine-grained ferrite with visible 

grain boundaries, also yellow titanium carbonitride precipitates and very fine niobium carbide separation 

are found at the grain boundaries. X2CrTi12 steel is also characterized by a fine ferritic structure with no clear 

ferrite boundaries. Only the releases of titanium carbonitrides are noticeable. The releases of titanium and 
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niobium in these steels are intended to prevent the formation of chromium carbides on the grain boundaries, 

which can lead to intergranular corrosion. 

 
(a) 

 
(b) 

Fig. 1. Base material: a) X2CrTiNb18, b) X2CrTi12. Etching in aqua regia 

Table I. Chemical composition of base metal according to PN-EN 10088-1: 2014-12 

 Content of elements, wt. [%] 

Steel C Cr Ni Ti Nb Mn Si Mo Pmax 

Norm <0.03 17.5÷18.5 ‒ 0.1÷0.6 <1 <1 <1 ‒ 0.04 

X2CrTiNb18 0.025 18.09 0.303 0.174 0.343 0.357 0.594 0.064 0.02 

Norm <0.03 10.5÷12.5 ‒ <0.65 ‒ <1 <1 ‒ 0.04 

X2CrTi12 0.022 11.91 0.183 0.210 <0.005 0.401 0.683 0.037 0.021 

Surfacing 
The surfacing process was carried out using the MAG method (135). Due to the low thickness  

of the native material (1.2 mm), padding welds were obtained whose geometry can be compared with butt 

welds in butt joints with the preparation of material edges on I. The native material was cut to 200 x 100 mm 

and surfaced along the long side. An active M22 gaseous shielding mixture (96% Ar + 4% O2) according to 

EN ISO 14175 was used. The use of shielding gas with the addition of oxygen reduced the surface tension of 

the padding weld's metal, which may increase its spread on the surface. An additional material  

in the form of a solid wire with a diameter of 1.0 mm was used. The surfacing process was carried out 

manually at an average speed of approx. 10 mm/s. The remaining surfacing parameters are: 90 A current and 

17 V arc voltage. The heat input of the deposition was approx. 0.122 kJ/mm.  

The welding was carried out in four configurations, the native material - additional material, presented 

in the table II. 

Table II. Material configuration used during the surfacing process 

Sample 

number 
Native material Additional material 

1 
X2CrTiNb18 

X2CrTiNb18 

2 X3CrNb17 

3 
X2CrTi12 

X2CrTiNb18 

4 X3CrNb17 

Scope of research of the obtained padding welds 
After the surfacing process, a number of tests were carried out to assess the structure, hardness and 

resistance to intergranular corrosion of the steel under test in the HAZ and padding weld. Among others, 

macroscopic, microscopic, hardness measurements and intergranular corrosion resistance tests were 

performed. 

For macro and microscopic examinations, samples cut across the padding weld were used. The cross-

sections obtained in this way were properly prepared and digested in the aqua regia solution (30 ml  

of hydrochloric acid+10 ml of nitric acid (V) + 40 ml of demineralized water) during 30÷40 s. 
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The hardness measurement was carried out using the Vickers method according to PN-EN ISO 6507 

and it was made in one measurement line according to the diagram shown in figure 2. The indentation load 

was 0.2 N. 

 
Fig. 2. Scheme of microhardness measurement 

The test for resistance to intergranular corrosion was carried out on the basis of ASTM A 262, Procedure 

E, which is recommended for stainless steels with the addition of elements stabilizing the structure. This 

study reveals that the effectiveness of steel stabilization with micro-additives, but also reveals changes in 

corrosion resistance after welding, giving information on the susceptibility to formation of chromium 

carbides at the grain boundaries. The test consists in placing material samples in a laboratory flask on copper 

filings with electrolytic purity (content of pure Cu copper element 99.99%). The preparation was immersed 

in a corrosive solution. The solution was heated to the boiling point (about 102 °C ‒ experimentally 

determined using a mercury-free thermometer) and maintained for 24 h. The corrosion solution contained 

100 g copper (VI) sulphate (II), 700 ml of distilled water and 100 ml of sulphuric acid (VI) and 1000 ml of 

demineralized water. The samples after removal from the corrosion solution were examined for the presence 

of discontinuities in the structure, occurrence of cracks on the surface. As a standard, in addition, samples 

are bent on the mandrel by 180° to break the continuity of the structure (bending test were not made due to the 

size of the surfaced samples) according to ASTM A 262-02a.  

Analysis of the results 
The macroscopic studies revealed significant differences in the structure of native material and in the 

padding weld in four different configurations - native material - additional material (Fig. 3). In the case of 

sample 1, (Table II, Fig. 3a), no clear grain growth in the HAZ was observed, and in the padding weld's axis 

a clear area of the fine-grained structure was observed. Also visible were oblong ferrite grains, whose spatial 

orientation is the result of the direction of heat dissipation during the welding. Compared with sample 1, in 

sample 2 (table II, fig. 3b), there was a slight increase in grain size in the heat affected zone, but more 

importantly, a coarse crystal structure was observed in the area of the padding weld's axis. This may be due 

to the lack of a stabilizing addition in the form of titanium in the composition of the additive material, which 

forms crystals in the liquid despite its heterogeneous nature. Sample 3 is a native material in the form of 

ferritic steel stabilized only with titanium (Table II), which as a result of surfacing contributed to the grain 

growth in the HAZ. The additional material in the form of a double stabilized electrode wire (X2CrTiNb18) 

resulted in a very similar structural system as in sample 1, i.e. fine grain in the padding weld's axis and 

elongated ferrite grains in the direction of heat dissipation (Fig. 3c). Sample 4 is a native material stabilized 

with titanium surfaced with a niobium-stabilized binder (Table II). This material configuration contributed 

to the grain growth in the heat affected zone and the largest grain size increase in the padding weld (Fig. 3d).  

Analysis of the microstructure confirms the results of macrostructural investigations. The samples were 

characterized by a ferritic structure with varying degrees of grain growth and precipitations. In sample 1 

after application, the HAZ microstructure was fine-grained with numerous titanium and niobium 

precipitates (Fig. 4a). The precipitation of titanium carbonitrides (Fig. 4b) and niobium carbides (Fig. 5) was 

also found in the padding weld.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 3. View of macrostructure of specimens after surfacing by welding: a) specimen 1, b) specimen 2, c) specimen 3, d) 

specimen 4, (material configuration in table II). Etching in aqua regia 

 
(a) 

 
(b) 

Fig. 4. View of microstructure specimen 1: a) HAZ, b) pad weld. Etching in aqua regia 

 
(a) 

 
(b) 

Fig. 5. Separation at grain boundaries in specimen 1: a) HAZ, b) pad weld. Etching in aqua regia 
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In the case of sample 2 (Fig. 6a), a partial grain growth was noticeable in the heat affected zone, however, 

precipitations were visible as in the first case. The weld on sample 2 (Fig. 6b) had a coarse grain structure, 

this may be due to too little stabilizing elements. The structure in HAZ of sample 3 (Fig. 7a) was characterized 

by a large grain with titanium carbonitride precipitates. No addition of niobium led to significant grain 

growth. A fine-grained structure with titanic and niobium precipitates could be observed in the padding 

weld (Fig. 7b). Sample 4 was characterized by a large grain growth in the HAZ with numerous titanium 

precipitates, whereas in the padding weld a rapid grain growth occurred (Fig. 8a and 8b). 

 
(a) 

 
(b) 

Fig. 6. View of microstructure specimen 2: a) HAZ, b) pad weld. Etching in aqua regia 

 
(a) 

 
(b) 

Fig. 7. View of microstructure specimen 3: a) HAZ, b) pad weld. Etching in aqua regia 

 
(a) 

 
(b) 

Fig. 8. View of microstructure specimen 4: a) HAZ, b) pad weld. Etching in aqua regia 

Hardness measurements carried out in all samples showed that the native material in the form of steel 

stabilized with titanium and niobium (samples 1 and 2) is slightly harder than steel stabilized only with 

titanium (samples 3 and 4) and amounts to approximately 170 HV0.02 compared to approx. 140 HV0.02. The 

heat affected zone in all cases showed a higher hardness than the native material, while in all cases the highest 

hardness values were obtained in the padding welds (Fig. 9). The padding weld made with the use of 

additional material stabilized with titanium and niobium is characterized by a higher hardness than the layer 

surfaced with a binder stabilized only with niobium. 
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Fig. 9. Hardness distributions 

Testing the resistance to intergranular corrosion of padding welds showed that samples 1 and 2 had  

a relatively high corrosion resistance. On the basis of visual inspections of padding welds (Fig. 10) and 

observations of macroscopic (Fig. 11) and microscopic (Fig. 12) specimens, there were no surface and 

structural incompatibilities characteristic of intergranular corrosion. In the heat affected zone, inclusions of 

titanium and niobium are visible. The padding weld's material was not affected by corrosion. The samples 

were consistent after the corrosion test. In the case of sample 3 there was a loss of material cohesion at the 

grain boundaries in the HAZ area (Fig. 13a), and microscopic images showed defects at the grain boundaries 

(Fig. 14a and Fig. 15). In the case of sample 4, the nature of changes in the material structure in the HAZ was 

similar to the changes in sample 3 but was characterized by lower intensity (Fig. 10d, Fig. 13b and Fig. 14 b). 

The padding weld's surface has not been breached. In spite of the clear intergranular corrosion, the sample 4 

did not lose its cohesion in the heat affected zone but applying force in this place would cause the material 

to break. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 10. View of specimens after bathing in a corrosive solution 
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(a) 

 
(b) 

Fig. 11. Macrostructure of HAZ: a) specimen 1, b) specimen 2 after a corrosion test. Etching in aqua regia 

 
(a) 

 
(b) 

Fig. 12. Microstructure of HAZ: a) specimen 1, b) specimen 2 after a corrosion test. Etching in aqua regia 

 
(a) 

 
(b) 

Fig. 13. Macrostructure of HAZ: a) specimen 3, b) specimen 4 after a corrosion test. Etching in aqua regia 

 
(a) 

 
(b) 

Fig. 14. Microstructure of HAZ: a) specimen 3, b) specimen 4 after a corrosion test. Etching in aqua regia 
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Fig. 15. Microstructure of HAZ specimen 3 after a corrosion test 

Summary 
The results of the conducted research indicate that the use of material stabilized at the same time with 

titanium and niobium limits the growth of grain in the heat affected zone and promotes fine-grained 

crystallization in the padding weld. Titanium and niobium during the surfacing show a strong chemical 

affinity for carbon, forming carbon compounds and limiting the binding of carbon to chromium, 

consequently limiting the depletion of crystals to chromium. As a result, in spite of the influence of the 

surfacing heat cycle, a sufficiently high resistance to intergranular corrosion of the material is maintained. 

This is particularly important in the case of welding processes introducing a large amount of heat to the 

material, which may promote the formation of chromium carbides at the grain boundaries. However, 

stabilization with niobium alone in the test conditions is not sufficient to inhibit the grain growth in the HAZ 

of the native material and to obtain a fine-grained structure without the precipitation of chromium carbides. 

This may be confirmed by the slight grain growth in the heat affected zone of the sample 2, after mixing of 

the base material and binder. In the case of titanium stabilized native material, there was a significant grain 

growth in the HAZ, which promoted the progress of intergranular corrosion, regardless of whether the 

additional material was stabilized with titanium and niobium, or niobium itself. The padding welds in both 

cases had good and comparable resistance to intergranular corrosion. The double stabilized material 

exhibited a higher hardness than the material stabilized with only one of these elements. 
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