The effect of niobium and titanium in base metal and filler metal on intergranular corrosion of stainless steels

Main Article Content

Marcin Żuk
Artur Czupryński
Dariusz Czarnecki
Tomasz Poloczek

Abstract




The article describes the effect of alloyed additives in base material and filler metal on intergranular corrosion. Steel 1.2 mm thick, titanium-stabilized ferritic stainless steel and titanium and niobium-stabilized ferritic stainless steel have been surfacing method MAG (135). The specimens received was subjected to macro and microscopic tests, hardness tests and the intergranular corrosion resistance test. The study showed a higher corrosion resistance of niobium and titanium stabilized steel from titanium-stabilized steel. In addition, a ferritic fine-grain structure was found in the padding axis made with the use of filler metal with titanium and niobium microadditives.




Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
M. Żuk, A. Czupryński, D. Czarnecki, and T. Poloczek, “The effect of niobium and titanium in base metal and filler metal on intergranular corrosion of stainless steels”, WeldTechRev, vol. 91, no. 6, pp. 30-38, Oct. 2019.
Section
Articles

References

Woszek M., Słania J., Golański G., Influence of welding process on microstructure of ferritic stainless steels. Welding Technology Review, 2017, Vol. 87(4), 15-18.

Łabanowski J., Głowacka M., Discoloration of the surface of welded joints of corrosion-resistant steel. Welding Technology Review, 2008, Vol. 80(6), 3-6.

Banaś J., Głownia J., Stypuła B., Kalandyk B., Intergranular pitting and abrasive corrosion of duplex 25Cr-5Ni-6Mo stainless cast steels with nitrogen. Inżynieria materiałowa, 1998, Vol. 19(3), 351-355.

Meran C., Bilgin M.B., Fusion and friction stir welding of X6Cr17 stainless steel. Journal of Achievements in Materials and Manufacturing Engineering, 2016, Vol. 61(2), 403-409.

Lippold J.C., Kotecki D.J., Welding Metallurgy and Weldability of Stainless Steels. Wiley, 2005.

Raabe D., Lüucke K., Textures of ferritic stainless steels. Materials Science and Technology, 1993, Vol. 9(4), 302-312.

Fujita N., Kikuchi M., Ohmura K., Suzuki T., Funaki S., Hiroshige I., Effect of Nb on high-temperature properties for ferritic stainless steel. Scripta Materialia, 1996, Vol. 35(6), 705-710.

Jeong K.K., Yeong H.K., Jong S.L., Kyoo Y.K., Effect of chromium content on intergranular corrosion and precipitation of Ti-stabilized ferritic stainless steels. Corrosion Science, 2010, Vol. 52(5), 1847-1852.

Rogalski G., Jurkowski M., Łabanowski J., Fydrych D., Influence of surface condition after welding on corrosion resistance of Austenitic stainless steel AISI 304, Biuletyn Instytutu Spawalnictwa, 2018, Vol. 62(1), 24-29.

Kułakowski M., Rokosz K., Alloyed austenitic, ferritic and duplex steels used in transport. Autobusy: technika, eksploatacja, systemy transportowe, 2017, Vol. 18(7-8), 357-362.

Wciślik W., Kossakowski P., Sokołowski P., Stainless steel in building structures ‒ advantages and examples of application. Structure and Environment, 2017, Vol. 9(3), 191-198.

Brytan Z., How to heat treat properly stainless steels? Stal. Metale & Nowe Technologie, 2016, Vol. 1-2, 62-64.

Ryś J., Witkowska M., Ratuszek W., Zielińska-Lipiec A., Effect of annealing temperature on texture and structure of duplex stainless steels. Inżynieria Materiałowa 2004, Vol. 3, 186-189.

Properties of corrosion-resistant steels, Euro Inox, Luksemburg, 2002, 1-24.